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ABSTRACT

A source-like model for two-dimensional airflow over mountain ranges is used
to generate a steady-state solution from prescribed mean atmospheric values as
initial conditions. A pronounced mid-tropospheric jet with upstream blocking and
two lee-wave modes are found. Downward momentum flux as well as phase
differences between the (¥, v') velocity components in the lee-wave system are
given. The results are in good agreement with field observations of the Colorado

lee-wave experiments.

1. Introduction

When wind flows across a mountain
range waves are generated on the lee side due
to the density stratification in the troposphere.
Sometimes cloud formations and, in particular,
lee wave (altocumulus lenticularis) clouds at
various heights in the lee wave system reveal
the existence of these waves (e. g., Flohn (1969)).
On February 17, 1970, a day when a steady cross-
mountain wind occurred, data were obtained
from instrumented aircraft flights in a mountain
wave west of Denver, Colorado. Lilly (1971) and
Lilly and Kennedy (1973) presented the data
analysis and results of this observational pro-
gram which was conducted to investigate the
mountain lee wave and associated turbulence
and wind phenomena in Colorado. The tem-
perature, pressure, and motion field components
were measured. In the Lilly and Kennedy (1973)
study emphasis was put on the determination
of the downward flux of westerly momentum
generated by the wave. Their results are com-
pared in this paper with a theoretical analysis
of a similar lee wave system.

Wong and Kao (1970) investigated the effects
of stratified flow over an extended obstacle to

study the effect of irregular topography on
vertical wind shear. For a medium of finite
depth, they computed the streamlines (represented
by lines of constant density) indicating the lee
waves behind a source like disturbance, and the
upstream velocity profile. Their work points to
the importance of topographical influence on
wind shear in the vertical within the troposhere,
and the establishment of steady wind and density
profiles characterized by variable local Richard-
son numbers independent of thermal wind effects,
provided the topography is source-like. To in-
vestigate the flow over a mountain range the
source model is perhaps the appropriate model
to use as compared with a closed body model.
This is because, first, the earth’s topography
downstream of the mountain is irregular and not
flat as a closed body model would suggest.
Second, the high levels of sporadic turbulence
observed by Lilly and Kennedy on the down-
stream side of the Rocky Mountains indicate
the possibility of a separated wake region, the
effects of which would persist for great distances
downstream. Such separated flow has also been
reported in laboratory experiments by Davis
(1969). Finally, the blocking effects observed
in the approach flow are known to be caused
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by source-like disturbances. In this paper, with
the same assumptions made by Wong and Kao
(1970), formulas for the horizontal and vertical
velocity perturbations downstream of a source-
like disturbance in a finite, density stratified
medium are developed. From these equations
the average momentum flux is computed. A
calculation is presented for a densimetric Froude
number equal to 0.145 corresponding to the
average mean flow observations reported by Lilly
and Kennedy. The upstream velocity profile,
the lee waves, and the downstream momentum
flux profile for the steady-state limit are pre-
sented graphically. The results which show two
lee wave modes and two upstream modes are
compared with the observations of Lilly and
Kennedy (1973).

2. Mathematical Formulation

The governing equations for an ianviscid, in-
compressible fluid, under the Boussinesq and
Oseen approximations, are:
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where g, is a constant mean density over the
whole layer, p the unperturbed equilibrium
density distribution, U the uniform flow, p the
pressure perturbation, (u, v) the velocity per-
turbation, g the acceleration due to gravity
which acts in the —y direction, and g the source
disturbance in the flow. From equations (1)
through (4) we obtain the following equations
for p alone, u alone, and v alone:
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where N*=(—g/p,)(dp/dy) is the square of the
Brunt-Viisald frequency and is assumed constant
in this investigation.

For the troposphere wind system which be-
haves like a medium with finite depth, it is
assumed that a flow betwegen paralled planes,
y=0 and y=d, over a barrier generated by a
source distribution is an appropriate model. The
proper boundary condition on y=0 and y=d is,
of course, v=0, which, in terms of p, is

0o K3

or 0x
Equations (3), (5), and (8) form the proper
initial-boundary value problem where the source
is switched on at time ¢=0, i.e., the source
disturbance is q(x, y)H(?).

Wong and Kao (1970) solved the equations
for the density perturbation by taking the
Fourier-Laplace transform in x and ¢t and the
finite Fourier sine transform in y. Taking the
inverse of the transformed equation and using
the Tauberian theorem, they obtained the solu-
tion for large time. The corresponding integrals
were evaluated by the method of residues about
the appropriate singularities. To do the integral
in the inversion theorem for the x-dependence,
the following argument was applied to simplify
the integrand, and thereby make the problem
tractable. In the steady state limit it can be
argued from group velocity considerations in-
troduced by Lighthill (1967) that contributions
to the fore and after unattenuated waves come
from poles at the value of zero of the ex-
ponential coefficient of the x-dependent Fourier
transform. Using this idea, Wong and Kao
simplified the denominator of the inversion
theorem integral for the x-dependence. The
details of the development of the density per-
turbations are presented presented in Wong and
Kao (1970), and, therefore, will not be repeated
here. With g(x, y)=008(x)d(y), which means the
Fourier transformed value ¢=Q/d, the dimen-
sionless total density field obtained by Wong and
Kao is given by the equations:

r=(1-p7)
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where &=x/d, 7=y/d, and B= —(1/p,)(dp/dy),
so that p=p,(1—B7); and F=U/Nd the densi-
metric Froude number, r=(p+0)/p,, €¢=NQ/(gd),
which are dimensionless, and Q is the source
strength.  Equations (9) and give the entire
density field in the steady-state limit.

Since one of the objectives of this in-
vestigation is to compute the momentum flux
downstream of the source, in addition to the
density perturbation, the vertical and horizontal

velocity perturbations are required. From equa-
tion (3) for steady-state
- 8ol
o' =(1/B) g (11)

where v/=v/U, £=x/d and p'=p/p,. Taking
the derivative of equation (10) with respect to
& and substituting into (11) we obtain for £>0
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where &/=Q/Ud.

For the velocity field at a distance from
the source (i.e., in fluid excluding the source)
continuity requires

ou  Ov!

Using equation (11) and integrating (13) with
respect to & we obtain

w =G ~1/B) % (14)

The constant of integration, G(3), is determined
by matching the unattenuated part of p/ for £>0
from equation (10) with the unattenuated part

L

of the downstream horizontal velocity, u/, de-
termined by Wong and Kao, viz.,

v cosnry cos nry.
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The reader is referred to Wong and Kao (1970)
for details in obtaining (15). Knowing G(») and
the entire density perturbation (equation (10))

the total ! can be determined from (14). The
results are as follows:
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We let, for convenience,
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Substituting (17) into (12) and (16) we obtain
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All sums in equations (18) and (19) are finite
or convergent for £>0.

To investigate the momentum flux, the in-
tegral of u' v/ was first considered. For £>»0
case, multiplying (18) and (19) neglecting the
last terms (which are transcendentally small) in
those equations, and integrating over a charac-
teristic wave length in the &-direction (viz., we
choose, arbitrarily, £=0to —4 where 1=2r/a;)
we obtain
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where 0,; is the kronecker delta. Equation (20)
is proportional to the momentum flux if we can
neglect the density perturbations. This will be
checked subsequently.

Using equations (10), (12), and (16) the
momentum flux for a constant was numerically
computed by Simpson’s rule, viz.,

—(@j—a,)™ (COS(

_i:“: { 2 26"’ @

(Fourvrds = A5 Lowtvi+4paivt-+ 20,0504
+Ap Vi o 2054 s 1V5, s
A+ 402U Vg + P20 41 M2 4100041]
where / is an integer corresponding to (2£+4-1)
equally spaced values of p(&, %), u'(& %), V(&%)
and &

The £>0 equations for both the u/v! cor-
relation and numerical computation of the mo-
mentum flux were developed. The exponential
terms, which represent the near field parts (6—0
for £>0), were found to small to be significant

in the example considered. Therefore, it appears
reasonable to neglect these terms; consequently,
equations (10), (12), and (16) with the last terms
in each dropped and equation (20) for the far
field can be considered good approximations for
good approximations for the near field.

3. Results and Discussions

The upstream velocity profile, the lee wave
system, and the variation in momentum flux are
plotted in Fig. 1, 2, and 3, respectively. The
case considered can be summarized as follows:

F=0.145 m=2

e!=0.05 3}

e =0.00145 p=0.2
corresponding to a depth of 18 km, and initial
unperturbed velocity of 25 m/sec, and an aver-
age Vaisild frequency of 9.5. The values in
(21) were selected based on the mean flow ob-
servations presented in Lilly and Kennedy (1973).
Comparison of the steady-state solutions as given
in the Figures will now be made with the ob-
servations of Lilly and Kennedy.

The plot of isotachs in m/sec in theis paper
indicated a strong upstream influence due to the
mountain range, especially the decrease in
velocity above 12 km, which is similar to the
decrease in vvelocity above #=0.5 in Fig. 1.
The cross section of potential temperature pre-
sented by Lilly and Kennedy (1973) indicated
that the wavelength for the lee waves in Colo-
rado was approximately two atmospheric heights
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Fig. 1. Steady-flow pattern showing the velomty profile far upstream and lee waves.
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Fig. 2. Horizontally averaged momentum flux of
a lee wave corresponding to a densimetric
Froude numbdr of 0.145.
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Fig. 3. Velocity perturbations correlation integral
integrated over the longest of the two
wavelength modes corresponding to a lee
wave with a densimetric Froude number
equal to 0.145.
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in their experiment according to the upstream
velocity profile is of the order of 20 km). Fig. 1
shows that the example presented in this note
contains similar length lee waves.

In Lilly and Kennedy the @’ versus v’ cor-
relation spectrum giving the phase relation be-
tween »/ and o/ at large scales gave a phase
difference of 100° to 105° based on the flight
data. They pointed out that this result is con-
trary to simple wave theory, which predicts an
approximately 180° phase reversal. However,
the theoretical approach used in the investiga-
tion reported herein conforms with the measured
results of Lilly and Kennedy. Table 1 gives the
variation in the phase difference between the
vertical and horizontal perturbation velocities
with height (values were approximated from the
calculations of #/ and @/ at equal interveals for
the Simpson’s integration). The tabulated data
indicate an approximate 90° phase difference,
which is consistent with the Colorado measure-
ments. It appears that the simple wave theory
fails to give the unattenuated fore and aft modes
which account for the correct phase relation-
ship given herein.

Table 1. The phase of the #' versus v/

variations
wavelengths Approximate
7 e Phase
Au’ v’ Differences
0.1 2.21¢ 2.21¢ 90
0.2 2.21¢ 2.21¢ 90
0.3 2.21¢C 2.21¢ —108
0.4 | 221¢ 2.21¢ ~100
0.5 | 2.21¢ 1.02¢ + 60
0.6 2.21¢ 2.21¢ + 60
0.7 p2.21¢ 2.21¢ + 60
0.8 2.21¢ 2.21¢ — 90
0.9 2.21¢ 2.21¢ —108

The numerical values of the momentum
flux depend on the interval of integration. The
dashed line in Fig. 2 corresponds to an interval
which is approximately the interval (§=0 to
£=10) used Lilly and Kennedy.. The solid line
corresponds to the longest wavelength of the
two modes, viz., £=0 to £=27/a,. In Table 2,
estimates of the magnitudes of the momentum
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Table 2. Horizontally averaged momentum
flux distribution of a lee wave
corresponding to a densimetric
Froude number of 0.145 over {=

22
7 o’ (s
0.05 0.001 0.8
0.1 0.00013 0.98
0.15 0.000074 0.6
0.2 —0.000051 —0.4
0.25 —0.000223 ~1.7
0.3 —0.000420 ~3.2
0.35 —0.000596 —4.5
0.4 —0.000723 ~5.4
0.45 | —0.000779 |  —5.8
0.5 —0.000757 —5.7
0.55 —0.000662 ~5.0
0.6 —0.000515 ~3.9
0.65 —0.000340 ~2.6
0.7 | —0.000167 —2.3
0.75 0.000020 0.2
0.8 0.000081 0.6
0.85 0.000127 0.95
0.9 0.000120 0.9

flux calculations based on the latter interval of

integration are presented. To determine these

estimates, the following was assumed for the

reference density of the atmosphere.
0o=12kg/m?

The average momentum flux is

T4 1d di i

ou'v =—1WJ‘0 ou'v!dé, nondimensional
and

o*ul v}, =Cpu'v’, dimensional

where Cis a proper conversion factor depending
on the atmospheric conditions. C is, in this ex-
ample, given by

C=p, U2=7500 dynes/cm?

where U=25m/sec is the appropriate charac-
teristic velocity. The results are of the same
order of magnitude as what was determined from
observations by Lilly and Kennedy. For the
interval of integration corresponding to the

longest wavelength of the two downstreamlee
wave modes, the average momentum flux is de-
termined to be downward between the vertical
interval 0.3<7<0.7 with an average value of
approximately 4 dynes/cm?, with a maximum of
about 5.8 dynes/cm? at 7=0.55. Between ap-
proximately the same vertical interval, Lilly and
Kennedy (1973) observed values of downward
momentum flux between 3 and 8 dynes/em?.
However, their interval of integration was arbi-
trarily selected as 200 km or about 10 atmos-
pheric heights. Therefore, the apparent con-
clusion is that the theory predicts the downward
momentum flux observed by Lilly and Kennedy
(1973), which they have related to the removal

of energy associated with the dissipation of the
gravity waves.

Can we neglect the density perturbations in
computing the momentum flux? Fig. 3 presents
the values of the w/v! correlation integral for
the interval of integration over the longest
characteristic wavelength, viz., 27 /e, (one of the
wavelengths corresponding to the two down-
stream modes). The average momentum flux is
determined by multiplying the average value
determined by the integration by the appropri-
ate conversion factor as follows:

- ~ 2w /oy
U= CU =) (g ) J, s

where C=7500 dynes/cm?, as before. Looking,
e. g., at 7=0.50, the integration gave u/v/ =.0012,
which gives an average downward momentum
flux of about 8 dynes/cm?. Therefore, it is
apparent that the density perturbation does not

influence the order of magnitude of the mo-
mentum flux significantly.

The main point of this paper is that a
source like model in a medium of finite depth
describes the salient features of the mountain
wave problem. The restrictions of an inviscid,
incompressible fluid did not hamper the calcula-
tions of the major features of the mountain
vave and its associated momentum flux. The
velocity and density profiles upstream of the
disturbance exhibit the correct jet-like behavior
and nonuniform local Richardson numbers,
illustrating the importance of the unattenuated
fore and aft modes. Blocking effects were ob-
served in the Rocky Mountain wave system, a
feature predicted by the theoretical analysis pre-
sented herein. Also, the theory verifies the re-
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sulting downward momentum flux in the mid
region of the lee wave system of the appropri-
ate magnitude. An important point is that the
choice of the horizontal averaging interval
affects significantly the values and distribution
of the momentum flux. Since the flux to be
determined is the result of a wave phenomenon,
the averaging interval should be over a charac-
teristic wavelength; in this investigation the
wavelength selected was the length of the
longest of the two downstream modes. The
present model also shows that a tropospheric
jet may be a concomittant event with the occur-
ence of lee-waves. The upstream shear wind
profile may not be prescribable a priori but is
a part of the total wave system due to the dis-
turbance. The agreement of the results pre-
dicted by the model with the field observation
in the larger features as well as in some subtle
details such as the phase relationship between
u' and ¢/ in the lee-wave system tend to suggest
the usefulness of such a model.
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