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Abstract 

This study focuses on the impacts of different settings of the Cloud Condensation Nuclei (re-

ferred as CCN) concentration in the WDM6 microphysics scheme of the WRF model on the simu-

lation of Typhoon Nepartak (2016). Through the comparison among experiments with different 

concentrations of CCN (wdm6_ctr, wdm6_5, wdm6_10 and wdm6_50, where 5, 10 and 50 repre-

sent that CCN concentrations are respectively 5 to 50 times of the value used in wdm6_ctr), it is 

aimed to get more understandings of the impacts when the typhoon passes through the Northwest 

Pacific Ocean including its track, intensity, and convection distribution. 

According to the results, the simulated tracks in four runs are quite similar. However, the in-

tensity and the maximum radar reflectivity are more intense in the runs of wdm6_5, wdm6_10, and 

wdm6_50 compared to the control run (wdm6_ctr). Moreover, the run of wdm6_50 needs more 

time to reach the similar intensity. And, the comparison of mixing ratios of five water species shows 

that the cloud-droplet mixing ratios increase as CCN concentration is increased. The mixing ratios 

of rain, cloud ice, snow and graupel are enhanced more rapidly in the runs of wdm6_5 and 

wdm6_10, compared to that of wdm6_50. The same situation happens both in the latent heat release 

rates and the kinematic fields.  

In this simulated case, it is suggested that the appropriate increase of CCN concentration (the 

runs of wdm6_5 and wdm6_10) results in stronger typhoons. However, with 50-time increase of 

CCN concentration the development of the typhoon is slowed down as shown in the results of 

wdm6_50. 

 

Keywords: Numerical Simulation of Typhoon, Cloud Condensation Nuclei Concentration, 
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