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ABSTRACT

In this study effect of barrier on the vortex is studied theoretically in terms
of the understanding of the dynamical events associated with its blocking pheno-
mena. A numerical model has been successfully developed for a stationary two-
dimensional vortex flow in the presence of a barrier, using the full Navier-Stokes
equations. The numerical results show the development of flow separation in the
lee of the barrier and its formation of a secondary vortex behind the barrier.
These results were compared favorably to the laboratory experiments and the
field data on typhoons when encountering the island of Taiwan.

1. Introduction

The importance of topographic effects on
the atmospheric flows has led to numerous
studies and investigations by many scientists
throughout the world in recent years. Although
it has been recognized that mountain ranges
have strong interaction with and influence over
typhoons, the problem of studying the dynamics
of a typhoon vortex in the presence of barriers
seems to have not been very well investigated.
In order to reduce human and economic losses
resulting from typhoons, it is important to
understand the phenomena and mechanism of
the block effect when a typhoon vortex is in
the vicinity of mountain barriers. With the
strong two dimensional characters assured by
its high rotational intensity, typhoon can be
treated as a quasi-two-dimensional rotationally
constrained fluid and considered as a two-di-
mensional concentrated vortex. This paper is
then to study the flow pattern of a uniform

flow associated with a fixed vortex in the
presence of a barrier.

The literature on the flow past obstacles is
extensive. The survey papers by Morkovin
(1964), Krzywoblocki (1966) and Berger & Wille
(1972) should be mentioned. They studied the
onset and the process of vortex shedding behind
bodies which are positioned symmetrically

relative to the main flow. Recently, Lugt &
Haussling (1974) investigated theoretically the
process of generation and shedding of the initial
vortex for laminar incompressible fluid flows
past an abruptly started elliptic cylinder at 45°
incidence for Reynolds number from 30 to 300.
However, the form and the onset of induced
vortex behind barriers in the combinations of
uniform flow and a fixed vortex for both
symetric and asymetric flows are not well
understood. In this paper, two cases of time-
dependent laminar flow associated with a fixed
vortex in the upstream of a two-dimensional
elliptical barrier are considered. A numerical
finite-difference scheme for the stream-function/
vorticity formulation is used to study the
dynamic behavior of such flow -conditions.
Results of the numerical computations are com-
pared to the laboratory experiments and the
field data on typhoons when encountering the
island of Taiwan.

2. The Flow Problem

The developing flow due to a uniform flow
associated with a fixed vortex in the upstream
of a two-dimensional elliptical barrier in an
open incompressible fluid is considered and
shown in Fig. 1. Mathematically an initial/
boundary-value problem for the two-dimensional
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Fig. 1. Schemetic diagram of flow problems.

Navier-Stokes equations with appropriate initial
and boundary conditions, must be solved to the
flow problem. These equations are conveniently
carried out in the dimensionless form. In order
to non-dimensionalize the variables, we introduce
the characteristic length, time and velocity to
be 4, /2/1’ and I'/{ respectively, where £ is
the length of the elliptical cylinder and 7' the
circulation of the fixed vortex divided by 2.
The dimensionless variables are then defined as

wr=u/(I' L), v¥=v/(I'] ), x*=x]{,
yE=y¥[L, t¥=t/(L2|]), ¢*=¢]]’,
=L/’ 2% (1)

In terms of these and neglecting the asterisk
symbol on the superscript of varibles, the equa-
tions of motion are formulated in forms of the
dimensionless stream function ¢ and &, the
dimensionless vorticity component normal to the
x-y plane:

Vig=t (2)
R S A

in which R,=/"Jv=Reynold number, v, the
kinematic viscosity and V? denotes the Laplace
operator in x- and y-directions.

The contour of the barrier in this study is
considered as an elliptical cylinder with length
of the major axis . On this surface, boundary
conditions are prescribed, according to the no-
slip requirement, such that the velocity vector
is zero. The dimensionless velocity components
u and v are related to ¢ by the equations
Thus, at the body surface the boundary condi-
tions are

0y
U= Ay =0, v=-— ox =0 (5)

While at the unbounded region, the flow field
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is assumed to be not influenced by the interac-
tion of the elliptical barriers, so the stream
function ¢ and the vorticity { remain invariant.
The initial condition is obtained from the
statement that the impulsive start of the devel-
opment of flow past an obstacle can be treated
as potential flow (see, for example, Batchelor
1967). The initial stream function is, therefore
set as

¢= U;E (y cos @¢—x sin a)— Lnr (6)

where r=z—a; a, the location of stationary
vortex and « is the angle of incidence of
uniform flow relative to the x-axis.

3. Numerical Analysis

The infinite domain of integration in the

x, y plane is replaced by a finite network of
points. The differential equations are replaced

by difference equations involving the values of
the variables at these grid points. The com-
putation domain is divided into 31 x 31 square

meshes with mesh size dxd, where d=£/m, m
is the number of meshes occupied by the major

axis of the elliptical barrier. Grid cells are half
size denser near the barrier and the fixed vortex
in order to resolve the higher vorticity and
stream function gradients. Equation (3) yields,

when solved for {; ; at the (n+L)th time step,
the system of finite difference equations

Cn+1= n _A.t(ZUC,', j+ZVC"y i)

i’ j ‘-, j
At pn
g G, 5
R D ) (7)

iy j+ iy j=1
where the terms of ZUC and ZVC correspond
to the convective terms A(ul)/0x and 0(v{)/dy
respectively in equation (3).

To preserve the stability of the numerical
scheme in the calculation of the convection
0ut)/0x and 0(v()/0y for larger Reynolds
number, the non-linear space derivatives are
approximated with special three point non-central
differences (Torrance & Rockett 1969). The
special forms are

0
- (az;@, i=2UC,, ,

- 1,( Uivy, jTUi, g ¢
= iy i

~d T

Uiy jt Uiz, 5

2 Ci—l N f> (83)
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when the coefficients é (Wisy, j+u;, ;) and

-1 -
7—(ui, j+u;i_y, ;) are positive and

28 zuc,,
UV /uyy, j4u,;
= H (‘A*_‘ 3y T CH-l, j
_ 3';4? Bt ,> (8b)
when the coefﬁcients are negative. When the
mean velocities ~2 (Wisy, j+u, ;) and — (u,, ;

4.y, ;) are of different sign, a miked expres-
sion is required which contains one term from
each of equations (8), as appropriate. A similar
procedure is used to approxlmate v/ dy

according to the sign of 2 (i, js1+0;, ;) and

»-2—(1),-, i+vi, j-1). The velocity components u;, ;

and v; ;, using central difference, are
1
Uj, j= 2&’(‘/’.’, jr1—di, j-1)s

v;, f'=%;"(¢i+l, i—¢ic1, §) (9

Equation (2) is approximated by a five-point
formula which yields for &i, ;

1
&, j=—4‘(¢i+1, it dicy, j+ i, i

+&i, ja—a%;, ) (10)
The system of algebraic equations (10) is
solved by the method of sequential relaxation
with an over-relation factor, E=1.4. The itera-
tion process is halted after the kth iteratation if

| V3 — (k| <& an
at each grid point, where & is of order 108
The number of iterations depends on the nature
of the flow field.

The wall vorticity is an extremely important
evaluation. The vorticity transport equation (3)
for Of/0t determines how ¢ is advected and
diffused, but the total £ is conserved at interior
points. At the body surface a one-sided
difference scheme must be used in order to
calculate the vorticity ;. Using the Taylor
series expansions with the no-slip conditions and
regardless of the wall orientation or boundary
value of ¢, we can write the first-order approxi-
mation as

G U]

L= 2(‘1"’3‘,}@— +0(AR) (12
where AR is the distance from (b+1) to (b),
normal to the wall. For ¢, the stream function
around the elliptical barrier is determined from
the average of the initial values of ¢ evaluated
from equation (6) on the grid points in which
the barrier is to be occupied. At the outer
boundaries, the following prescribing conditions
as mentioned previously are specified as

9C/0x=0 (13a)
on vertical outer boundaries,

0¢/8y=0 (13b)
on horizontal outer boundaries and

0¢/0t=0 on outer boundaries. (14)

The integration process is carried out in
the following way. The flow is considered to
be started impulsively within an infinitesimal
time interval. Thus at t=0, the motion is
assumed irrotational except at the center of the
vortex. The initial flow is then obtained from
the calculation of ¢, and appropriate boundary
conditions incorporated in solving the Laplace
equation V?¢=0. The vorticity %' for the
advanced time step n+1 is computed at the
interior points according to equation (7). ¢}
is then calculated with the aid of equation (10).
The cycle concludes with the calculation of

2*! from equation (12).

Computations were carried out in single
precision on a CDC-CXBER-72 computer. The
graphic display of streamlines was produced
with a CNTR 2 subroutine.

4. Results and Discussion

The flow problem of a uniform flow
associated with a fixed vortex in the upstream
of a two-dimensional elliptical barrier has been
studied numerically. The numerical results show
that both of the uniform flow and the fixed
vortex play important roles on the effect of
flow features. The dimensionless velocity of
uniform flow, U,Z/7", is incorporated with the
Reynolds number, /'/v, to study the flow pro-
blem. As the value of U,¢/I" is small (say, 0.5
for example), the combinated flow acts as a
fixed vortex in the interaction with a barrier.
Otherwise (say, U,Z//'=1.5 for example), the
steering flow plays an important role in studying
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the interaction characteristics. Based on the
position of fixed vortex and the angle of
incidence as sketched in Fig. 1, the results are
presented as follows.

(1) Case 1—fixed vortex located on x-axis.

To study the flow patterns associated with
a fixed vortex in this location, Reynolds number,
I'/v, in a range of 102 to 10* was investigated
in a sequence calculations. For U,//I'=0 and
R,=100; the flow around the elliptical barrier

1% 0. arid 110l Ta 13403 00

Fig. 2. Streamlines around the barrier in a
fixed vortex flow for R,=100 at
£=0.4864 (125 sec).
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due to the fixed vortex is weak. The result
shows that the streamline pattern has reached a
almost steady state solution at ¢=0.4864. The
flow pattern shown in Fig. 2 is quite similar
to the case of Stokes flow. Fig. 3 is the
flow pattern for R, increasing to 500. It can
be seen that as the fluid flow of the fixed
vortex becomes faster, it migrates the stagnation
point of the lower one from the midway toward
the edge A of barrier and the flow has a
tendency to be separated at that tip. When the
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Fig. 3. Streamlines for R,=500 at r=0.4864
(25 sec).
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Reynolds number is increased to 104, the fluid
of the fixed vortex flow around the barrier time. As this eddy grows, it tends to shed
ecomes fast and flow seperation occurs at both
tips of the barrier. An induced eddy is formed Fig. 4. When the first eddy at edge B is shedd-
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(d

Fig. 5. Sequence of streamline pictures showing the flow pattern of the fixed vortex in

the presence of an elliptical barrier. Experimental Conditions: 2=16.4 rad/sec;

U=0; 2,=1.7cm; R,=4,680; flow development at 1,
(a) (b) ©) (d)

t  tt3sec  f+T7sec  fo+1lsec  f+15sec

away from the barrier.

R

Fig. 4. Some patterns of streamlines for
R.=10* at varsovs times. Potential
flow at r=0. 1=0.
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(q) Surface flow lines of typhoon

kate, July 22, 1962.

cbservably first at the edge B and grows with

(e

(e)
t,+19 sec

This can be seen from
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ing, a second eddy is starting to form near
the edge A. The eddy near the edge A has a
tendency to grow in size and to shed away
from the tip. For the purpose of comparison,
surface flow lines of typhoon Kate, 1962 was
analyzed and plotted in Fig. 4g. It is seen that
the resemblance of the flow pattern between
the numerical computations and the field data
is striking, This fact was also confirmed in
the experimental observation as shown in Fig. 5.
When the second eddy of edge A has been
shed, the eddy near edge B has closed the
shedding and become full-grow, and tends to
shed away again. This completes a full cycle
of which commences with the shedding of a
eddy from the edge B and ends with the shed-
ding of the next time at this same edge. The
alternate shedding process approaches a steady
state at =6 has a time interval of 1.5 between
two successive cycles.

For the flow of U,///'=1.5, a=10% the
flow pattern in the interaction with a barrier is
quite different from- the flow described above.
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Owing to the effect of steering flow, an induced
eddy is formed firstly at the edge A and grows
with time. While the eddy is shedding, a
second eddy is starting to form near the edge
B. At dimensionless time t=1.8, both of eddies
at edges A and B are shedding and growing in
size. A sequence of streamlines for this flow
condition can be seen in Fig. 6. In Fig. 7 the
sequence of streamlines is shown for the same
flow conditions except angle of incidence az=30",
(2) Case 2—fixed vortex located on position 2.

For flow of U,¢/!'=0.5, «=0° and R,=
5x 103, since the steering flow is comparatively
small with respect to the vortex flow, the flow
feature is dominated by the effect of the fixed
vortex. As shown in Fig. 8, an induced eddy
is formed at first near edge B and grows with
time. A second eddy is starting to form at tip
A when the eddy of edge B is shedding. These
two eddies are growing in size in the transient
The alternate phenomena of the forma-
tion and shedding of eddies at both tips is not
observable in this flow condition, These results

1%eobe 15uel Toiors mis
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(d) (e )
Fig. 6. Sequence of streamlines for R,=5x108, U,4/'=1.5, a=0° at various times. Potential
flow at ¢=0.
(a) (b) © (d) (e )
t 0.3 0.6 1.2 1.8 3.0 6.0
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Fig. 7. Some patterns of streamlines for R.=5x108, U,4/I'=1.5, a=30°

(a) (b) (c)

t 0 0.45 0.9

Jrrs tmed Tobbin) fhrbe (M Te thdla )

760 (NAIT Bhd>

\

"\ g XL

——

),

)
v
\__///

: /  vaom

\

é

(d)

were compared with surface flow lines of typ-
hoon Judy, 1953 as shown in Fig. 8d. It can
be seen that the agreement is remarkable. Fig.
9 shows the similar flow feature for the case
of R,=2x104%, Uy4//'=0.2 and «=30°, These
transient developments of flows can be confirmed

Fig. 8. Sequence of streamlines for U,¢/I'=0.5,

a=0° fixed vortex located atposition 2
at various times. Potential flow at r=0.

(a) (b) (©)
! 1.35 3.6 6.3
(d) Surface flow ilnes of typhoon Judy,
June 5, 1953.

from the pictures of experimental performation
shown in Fig. 10. Fig. 11 shows the flow
develodment for the case of U,{//'=1.5, a=0°
and R,=5x10% This flow feature is similar to
the flow pattern as shown in Fig. 6, an eddy is
formed firstly at edge A. As the eddy is shed-
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ding a second eddy is starting to formed near
edge B. These two eddies ate then kept grow-
ing with time,

5. Conclusion

In the present study, a numerical scheme is
used to analyze the flow feature of a uniform
flow associated with a fixed vortex in the in-
teraction of a two-dimensional elliptical barrier.
With the numerical calculation for several flow
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conditions, we now make the following tenta-
tive conclusions:

(1) Induce eddies are occurred in the wake
region behind the barrier. When the fluid of
the vortex flow around the barrier is small, the
flow is similar to Stokes flow.

(2) When the steering flow is relatively
small in the combined flow field of uniform
flow and fixed vortex, an induced eddy is
formed observably at first near edge B. Other-
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Fig. 9. Some patterns of streamlines for R,=2x104, U,4/I'=
0.2, «=30°, vortex located at position 2 at various times.

(d)
9.0

(b)
3.15

(©)
6.3

Sequence of streamline pictures of laboratory experiment. Same experimental

condions as Fig. 5, except fixed vortex located at position 2.

(b)
t,+8 sec

(a) ()
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Fig. 11. Some patterns of streamlines for numerical results. Same flow flow conditions
as Fig. 8. except U,4/I"'=1.5. Potential flow at ¢=0.

(a) (b) (©
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wise, the induced eddy will be formed near
edge A. Both of induced eddies are growing
in size and shedding away in the sense of
transient development.

(3) For the flow of a fixed vortex, two
induced eddies behind barrier will be formed
and shed in an alternate development. This
exchange process will be approached to a steady
situation,

(4) Even the induced eddy is shedding,
there will be existed stagnation point in the
flow field.
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