伴隨鋒面過境台灣南部近海索狀雲之分析

紀水上^{1,2} 劉清煌¹*

1中國文化大學大氣科學系

2真理大學通識教育中心

(中華民國一〇六年一月九日收稿;中華民國一〇六年四月五日定稿)

摘 要

2014年5月5日鋒面通過台灣南部近海,激發在衛星影像上可觀測到狹而淺的索狀雲(rope cloud), 此雲帶分別於4日2300UTC及5日0000UTC和0230UTC通過小琉球、綠島和蘭嶼。本文利用衛星雲 圖、雷達回波,以及小琉球、綠島和蘭嶼氣象站高時間解析度地面觀測資料,對此鋒面前緣索狀雲之形 成及其演變進行分析。結果顯示,在索狀雲過境期間,風向劇變、氣壓驟增及溫度劇降的特徵,此與冷 鋒過境者相同,因此索狀雲為確定鋒面位置相當好的指標。此外,氣壓場顯示,在雲線過境期間具有兩 階段上升的特性,此與雷暴陣風鋒面過境期間所顯現的現象相似。

衛星雲圖顯示,索狀雲呈穩定性移動,其移速約為8.3 ms⁻¹。由地面觀測開始降溫到升溫兩點間的 壓力差計算密度流(density current)速度,其值為9.1 ms^{-1。}密度流速度略高於實際風速及雲線軌跡速度, 係因測站的風速是10分鐘的平均,而軌跡速度是較長時間的平均。

分析結果又顯示,台灣南端東西兩側索狀雲的結構有異,西側較淺,其強度最強時的回波頂高度約 為 2~3 公里;東側較強,最強時的回波頂高度約為 3~4 公里。降水從冷鋒雲帶降下產生冷池,冷空氣 下衝向外擴散抬升前方淺薄的暖溼空氣形成索狀雲。就索狀雲形成機制觀之,其形成機制非常類似弧狀 雲的形成過程,兩者都因密度流而成。索狀雲由微弱冷鋒抬升,而弧狀雲則由雷暴下衝流激發之陣風鋒 面所抬升,因此弧狀雲似乎比索狀雲強。

關鍵字:索狀雲、陣風鋒面、弧狀雲、密度流、冷池、下衝流

^{*}通訊作者地址:劉清煌,11114臺北市士林區華岡路 55號,中國文化大學大氣科學系 E-mail: ching_hwang@yahoo.com TEL: 02-2862-5110

一、前言

衛星雲圖是大氣動力和熱力的綜合結果,其 雲型與氣流、溫度、水氣分布,以及垂直穩定度 等等的氣象要素有密切關係。因此,衛星雲圖可 以確實地把雲型呈現出來。與天氣系統有關的雲 型除我們所熟知的溫帶氣旋、熱帶氣旋和中尺度 對流系統外,還有由這些系統所引發的高對流層 卷雲雲型和低對流層雲線。高層卷雲型包括與高 空氣流平行的卷雲條(Ci streak)和幾與氣流垂直 的橫雲帶(transverse band)。這些雲型特徵可代表 高空輻散場,因此在劇烈天氣分析和預報扮演相 當重要的角色(紀,2014;Lenz et al.,2009)。常 見之低層狹窄雲帶(雲線)有雲街(cloud street)和 卡門渦(Karman vortex)、弧狀雲(arc cloud)和索狀 雲(rope cloud)。

冷季,當冷氣團從華北南侵進入黃海和韓國 半島南方海面時,在衛星雲圖上經常可觀測到平 行低層風向之狹而長的積雲帶,此積雲帶即為雲 街。雲街的形成,係當冷空氣吹向較暖的水面上 和逆溫的暖空氣層,較暖的水面釋放暖而溼的空 氣給其上方的冷空氣,加熱的空氣柱自然上升穿 過大氣;逆溫層似一蓋子,扮演抑制的角色,當 上升空氣撞到它就翻滾自我返回而形成平行的旋 轉空氣的圓柱。當此種現象發生,溼空氣冷卻而 凝結成底部平坦頂部蓬鬆且平行於盛行風風向的 積雲,這些積雲排列而成雲街。雲街形成於大而 平的洋面,一般相當平直。然而,當雲街流經島 嶼,地形會破壞風的流動而使雲街在島嶼下游形 成雙螺旋雲型,一為順鐘向,另一為反鐘向,此 螺旋雲型即稱為卡門渦列(Karman vortex streets)。

Fujita (1955)詳細分析伴有雷暴之中尺度對 流系統指出,當系統到達時,伴隨氣壓的激增、 風變(風速增加和方向改變)、氣溫下降和降雨。 Fujita (1959)又指出,雨滴在下衝流(downdraft)中 蒸發,導致雷暴下方空氣冷丘(cold dome)的發展 而激發中尺度高壓系統的形成。此"中尺度高壓 (mesohigh)"前緣的鋒面是雷暴陣風鋒面(gust front)。在衛星雲圖上,經常可以看到位於雷暴雲 系前緣或由雷暴雲系主體脫離的圓弧狀分布的積 雲線,此雲線稱為弧雲線或弧狀雲。Purdom (1973) 就是從衛星雲圖發現此種雲型的第一人。造成弧 狀雲的機制為此中尺度高壓前緣之雷暴陣風鋒面 抬升前緣暖溼空氣形成。

衛星雲圖上也經常可看到沿著冷鋒前緣狹而 淺的雲帶,該雲帶即為索狀雲。索狀雲大都在熱 帶洋面上(Shaughnessy and Wann, 1973),但也可 能發生於陸地上(Woods, 1983)。此雲系之雲頂高 度約在 2.5~2.8 公里, 而甚少高於 4.5 公里, 且 少雨。索狀雲之形成乃低層潮濕空氣被冷鋒抬升 而形成,在這方面,非常類似伴隨雷暴外流 (outflow)之陣風鋒面抬升的弧狀雲(Goff, 1976)。 Janes (1976)利用高解析度之 DMSP (Defense Meteorological Satellite Program)可見光雲圖和地 面觀測指出,索狀雲的位置與冷鋒位置相當吻合, 即它可指示鋒面的位置,也是唯一能精確指出地 面鋒面位置的指標。然而,索狀雲雖經常被觀測 到,但大都出現在資料在稀少的洋面上,因為傳 統資料的稀少,無法證明索狀雲和地面冷鋒是一 致的。

Seitter and Muench (1985)利用美國佛羅里達 州卡納維拉爾角空軍基地(Cape Canaveral Air Force Station; CCAFS)之 150 米鐵塔觀測資料。他 們利用此鐵塔之 3.6 米、62 米和 150 米等三層觀 測資料,探討 1983 年 5 月 4 日通過佛羅里達半 島的索狀雲,結果顯示,鋒面前緣與雷暴陣風鋒 面非常相似,且其速度可由陣風鋒面移速方程得 到很好的預測結果。然而,在亞洲地區對此天氣 系統之探討甚少。自1977年7月14日日本第一 枚地球同步氣象衛星升空作業後,索狀雲的分析 僅見於 Obana (1983)和 Ito (2002)。因此,此種天 氣系統之探討也是必要的。

2014 年 5 月 5 日有一鋒面通過台灣南部近 海,在衛星影像上可見狹長而淺的索狀雲。此雲 帶分別於 4 日 2300UTC 及 5 日 0000UTC 和 0230UTC 通過小琉球、綠島和蘭嶼。在此期間, 小琉球自動氣象站、綠島自動氣象站和航空氣象 站,以及蘭嶼氣象站及航空氣象站等站有完整的 高時間解析度的地面觀測,且在該雲帶形成、加 強至消散期間均於日間,高解析度可見光雲圖可 完整的解析。因此,本文利用高解析度(1公里) MTSAT 可見光雲圖及上述氣象站之短時距的地 面觀測資料,以及探空資料,對此個案進行分析, 以了解其形成過程及與鋒面的關係,藉以提供天 氣分析與預報參考。

二、個案描述

圖1為2014年5月5日0130UTC之MTSAT 衛星雲圖。該圖顯示,一寬廣的鋒面雲帶從那霸 南方海面向西南伸經台灣南端至廣東南方海面。 可見光雲圖(圖1a)顯示,宮古島南方海面之雲 帶前緣有一狹窄雲線,此雲線即為索狀雲。該雲 線經綠島和蘭嶼之間海面至南海北部(東沙島西 南方海面)。蘭嶼東方之雲線較不清晰,以西者較 為清晰;前者較不清晰似受其北方深對流雲上方 高雲影響所致。紅外線雲圖(圖1b)顯示,此索 狀雲是一很淺的特徵,其寬度僅幾公里,高度也 應不高於4公里。 利用高解析度的可見光雲圖可以確切辨識此 雲線之位置及其形成、加強和消散等演變過程。 圖 2 為與圖 1 同時間解析度 1 公里之可見光雲圖 和墾丁氣象雷達站仰角 0.5 度之 PPI (plan position indicator)回波圖。為便於解說,將海岸線及雲線 前緣描繪於圖 2a 上。圖 2a 顯示三條雲線,此等 雲線分別從蘭嶼西方海面向西南伸經台灣南端近 海轉向西進入東沙島海域(圖 2a 雲線 A);一從 宮古島南方海面雲帶前緣西伸至綠島和蘭嶼之間 海域(圖 2a 雲線 B);最後一條雲線從雲線 B 南 方向西南延伸後轉為西北成弧形穿過蘭嶼進入錄 島西方海面(圖 2a 雲線 C)。

由於索狀雲是由層雲、層積雲或積雲組成, 可見光雲圖雖極易辨識,但對於嵌於雲帶中的淺 對流則否。此時,雷達觀測則可扮演重要角色, 圖 2b 是墾丁氣象雷仰角 0.5 度之回波圖,在衛星 雲圖三雲線中的對流部分在雷達回波清晰可見。 雲線 A 和雲線 B 似與地面鋒面有關,為本文討論 的對象,而弧形狀之雲線 C 雖不是本文的探討對 象,但仍嘗試以 5 日 0000UTC 地面天氣圖(圖 3)說明。該圖比日常作業用的分析(圖未示)更 為詳細,包含台灣附近島嶼觀測及兩個船舶觀測 (約在宮古島東方 150 公里和那霸東南方 100 公 里海域)。

圖 3 顯示,冷鋒由日本那霸南方海域之低壓 中心向西南伸展經蘭嶼北方近海進入南海,在巴 士古東方海域有一中尺度高壓存在,此高壓之反 氣旋式外流與呂宋島北部、巴士古和蘭嶼等風場 輻合形成弧形的外流邊界(outflow boundary),或 稱陣風鋒面(gust front)(圖 3 中粗虛線伴三角形)。 該外流邊界與圖 2a 的雲線 C 是非常吻合的,顯 見雲線 C 似由之中尺度高壓(或中尺度高壓前緣 陣風鋒面)所導致。

圖 1 2014 年 5 月 5 日 0130UTC 之 MTSAT 衛星雲圖(a)可見光雲圖和(b)經 MB 曲線強化之紅外線雲圖。圖 b 中 之點線為描繪圖 a 中之索狀雲。

圖 2 2014 年 5 月 5 日 0130UTC 之 MTSAT 解析度 1 公里之(a)可見光雲圖及描繪海岸線(紅點線)及雲線位置 (黃色線), (b) 2014 年 5 月 5 日 0125:25UTC 墾丁氣象雷達仰角 0.5 度之回波圖,色階為回波值。

圖 3 2014 年 5 月 5 日 0000UTC 地面天氣圖。伴有三角形和半圓形之粗實線為鋒面,粗虛線伴三角形者為外流邊界(陣風鋒面)。

圖 4 為 2014 年 5 月 4 日 2300UTC 至 5 日 0000UTC 空間解析度1公里、時間解析度半小時 之可見光雲圖。在4日2230UTC(圖未示),雲 帶籠罩台灣及其鄰近地區,一具有結構的雲帶從 台灣東方海面向西南伸展經台灣南部進入台灣海 峽南部。由於此時太陽角度關係,雲帶中有些呈 塊狀並在其背陽面投射影子的雲系,該等塊狀雲 系為發展較高的對流雲,其尺度由東北向西南減 小,而在背陽面的影子稱為雲影或雲蔭(cloud shadow)。隨著太陽角度的增加,此深對流軸線變 得逐漸不清楚。2300UTC(圖4a),在台灣西南海 域之雲帶前方已有呈東北西南走向的雲線(雲線 A1)。在雲線 A1 東緣南方有一較淺的雲線向東北 伸經小琉球。雲線 A1 向東南東移動,在其東南 方之淺雲線加強並過境小琉球(圖 4b)。5 日 0000UTC (圖 4c), A1 和 A2 合併為雲線 A。以 下就以雲線 A 敘述此雲系的演變。

雲線 A 在 5 日 0000UTC 由雲線 A1 和 A2 合 併後繼續增強,於 5 日 0100~0130UTC(圖 5a 及 5b)達最強。之後開始減弱,於 0200UTC 併入雲 線 B (圖 5c),0230~0300UTC 過境蘭嶼(圖 5d 及 5e),並於 0400UTC (圖 5j)移出雲圖範圍,

而於 0832UTC (圖未示) 消失。 雲線 B 似於 4 日 2300UTC~5 日 0000UTC 就已存在(參閱下節之 地面觀測),由於在其後方有具組織的 MCSs 存 在,其卷雲砧模糊了此雲帶,致使該雲線無法辨 識。由於 MCSs 向東移動,索雲線向南傳播,逐 漸脫離 MCSs 卷雲砧覆蓋而變得清晰。5 日 0100UTC(圖 5a),隱約在雲帶前緣有比前些時刻 較明顯的東西走向邊界(雲線B)。雲線B因逐漸 遠離雲帶而漸漸清晰,於 0200UTC 後與前述雲線 A 合併,0230~0300UTC (圖 5d 及 5e) 進入蘭 嶼,0330UTC 離開蘭嶼(圖 5f)。雲線過境蘭嶼 後繼續南移並加強,約於0330~0400UTC 達最強 (圖 5f 及 5g), 之後開始減弱,於 0630UTC (圖 51)移出雲圖範圍,但於 0932UTC 消散(圖未示)。 另一似由 MCS 激發的新生雲線 (雲線 D)於 0400UTC 在蘭嶼西北方海面形成,該雲帶也過境 蘭嶼(圖 5j~51),本文不做討論。

圖 6 為 2015 年 5 月 5 日 0001:25~0249:24UTC 墾丁氣象雷達 0.5 度 12 分鐘間距之 PPI 的回波 圖,但分析時則以 6 分鐘間距之雷達資料,圖中 英文字母 A、B 和 C 分別與圖 2 中所示之索雲線 A、索雲線 B 和弧雲線 C 相對應。5 日 0001:25UTC

圖 4 2014 年 5 月 4 日 2300UTC 至 5 日 0000UTC 半小時間距之 1 公里解析度可見光雲圖。由東北向西南伸展之 藍色粗虛線為深對流軸,標有英文字母之黃色實線及黃色虛線為索雲線。

圖 5 2014 年 5 月 4 日 2300UTC 至 5 月 5 日 0630UTC 半小時間距之 1 公里解析度之可見光雲圖。

圖 6 2015 年 5 月 5 日 0001:25UTC~0249:24UTC 墾丁氣象雷達 0.5 度 12 分鐘間距之 PPI 的回波圖,圖中英文字 母 A、B 和 C 分別與圖 2 中所示之索雲線 A、索雲線 B 和弧雲線 C 相對應。

(圖 6a),伴隨索雲線 A 之回波帶在墾丁雷達站 西北方 30~50 公里處向東向南擴展,於 0049: 26UTC(圖 6e)與墾丁站東北方附近之回波合併 並過境墾丁雷達站。合併後,回波繼續向東向南 移動並加強,於 0137:26UTC(圖 6i)達最強後, 回波帶西段逐漸減弱。至 0213:26UTC(圖 6l), 西段回波波帶僅存零碎的微弱回波。東段回波帶 繼續東移,其強度持續一段時間,至 0213:26UTC (圖 6l)開始減弱,其中較強的回波於 0225: 26UTC(圖 6m)抵達蘭嶼,0237:24UTC(圖 6n) 過境蘭嶼後遠離觀測範圍。

伴隨索雲線 B 之回波帶於 0001:25UTC (圖 6a)從綠島東北方向西伸經綠島北方,該雲線於 0013:25UTC (圖 6b)抵達綠島,於 0049:26UTC (圖 6e)過境綠島。過境後持續加強,至 0149:26UTC (圖 6j)開始減弱,於 0237:24UTC (圖 6n)遠離觀測範圍。

前已敘及,索雲線是由低雲(層雲、層積雲 和積雲)組成且尺度小,在4公里解析度之紅外 線雲圖不易辨識,雖有1公里解析度可見光雲圖, 但該雲圖無法顯示雲類之高低,而雷達的 RHI (range-height indicator)回波就可解決此問題。本文 選取墾丁雷達之方位角 265 度(距雷達站 50 公 里)、75 度和 90 度(距雷達站 80 公里)之 RHI 垂直剖面,以分析索狀雲之發展高度。

圖 7~9 分別為 2014 年 5 月 5 日 0019:25~ 0113:25 UTC 265 度方位角(圖 7a)和 75 度方位 角(圖 7b)、0019:25~0113:25UTC 265 度方位角 (圖 8a)和 90 度方位角(圖 8b)及 2014 年 5 月 5 日 0107:25~0213:26UTC 75 度方位角(圖 9a) 和 90 度方位角(圖 9b)之 RHI 回波圖。

圖 7 為 265 度方位角和 75 度方位角之 RHI

回波圖,265度方位角可以表示由西向東移動/發 展的回波。在 0019:25UTC, 距墾丁站西方 45~ 50 公里處有發展較好的回波,最強回波在約 48 公里處,其回波高度約1.6公里。此外,在20~ 40公里處亦有零星的回波,但強度很弱。在45~ 50km 回波東移範圍大並加強,於 0025:24UTC 其 回波高度增高至2公里,在其東方的回波亦組織 起來且東移,惟尚無較強的回波,此時另有發展 至 3 公里高度之回波移近距墾丁站 53~55 公里 處。在 0031:29UTC,除 25 公里以東的回波稍微 减弱外,其餘均東移並加強,範圍也擴大,回波 高度在 2~3 公里,為該剖面回波最強的時刻。之 後,回波繼續東移靠近墾丁站,但強度減弱,於 0049:26UTC,較近雷達站回波移入雷達站,在其 西邊的回波減弱。至0055:26UTC,在雷達站附近 的回波東移加強,其範圍含蓋雷達站西方18公里 至東方 25 公里,回波高達 3.5 公里左右(見圖 7a 及圖 7b)。該回波西方的回波繼續東移,進入雷 達區但消散。

在 0055:26UTC 籠罩雷達站西方 18 公里至東 方 25 公里之回波繼續東移並加強,於 0107:25 移 出雷達站東北東方 20 公里,其涵蓋範圍包括在雷 達站東方 20~35 公里處,回波高度約 3-5 公里, 達最大強度(見圖 7b 和圖 9a)。此後,回波繼續 向東北東移動移動,其強度緩慢減弱,至 0143:25UTC(圖 9a)後快速減弱,回波高度降低 至 4 公里以下。之後更快速減弱,較強的回波幾 已消失。該回波前緣於 0201:25 接近雷達站, 0213:26UTC 過境墾丁,但已無組織。

圖 8 表示墾丁西方偏南(265 度方位角)55 公里至東方(90 度方位角)80 公里間之 RHI 回 波垂直波面圖。在墾丁西方之回波,部分已敘述 於上,在此不再贅述。西方之回波於5日0113:

圖 7 2014 年 5 月 5 日 0019:25~0113:25UTC 6 分鐘間距之 RHI 回波(a) 265 度方位角和(b) 75 度方位角。橫軸為 距離雷達之公里數,縱軸為高度(公里)。

圖 8 同圖 7,但為(a) 265 度方位角和(b) 90 度方位角。

圖 9 同圖 7,但為 0107:25~0213:26UTC (a) 75 度方位角和(b) 90 度方位角。

25UTC 部分移經雷達站繼續東移,逐漸移出雷達 站而加強(見圖 8b)。至 0137:26~0143:25UTC 達 最強(圖 9a),其最強回波之回波高度達 4 公里, 為該回波之最強期。該回波繼續東移,其強度緩 慢減弱,至 0201:25UTC(圖 9b)後才有明顯的 減弱。回波前緣於 0213:26UTC(見圖 9a)將移出 雷達觀測範圍且逐漸消失。

上面所述之 RHI 回波圖顯示,在沿 265 度方 位角,可以看到索雲線內有許多小對流胞,高度 約在 2~3 公里。在沿 75 度及 90 度方位角,可以 看到對流線上存在對流胞,對流胞高度約在 3~4 公里。顯然,索雲線東西兩側對流特性是有不同, 西側沒發展,東側可能與其他系統產生交互作用 而發展。

三、地面觀測

衛星雲圖顯示,索狀雲過境小琉球、綠島和 蘭嶼,在這些地方均有中央氣象局的氣象站和民 航局的航空氣象站(小琉球除外)。小琉球自動氣 象站位於北緯 22°20'02"、東經 120°21'15",海拔 高度 51 米;綠島自動氣象站在北緯 22°39'14"、 東經 121°28'31",海拔高度 304 米;蘭嶼氣象站 位於北緯 22°02'19"、東經 121°33'02",海拔高度 324 米;綠島航空站位於北緯 22°40'25"、東經 121°27'59",海拔高度 27 米;蘭嶼航空站位於北 緯 22°01'46"、東經 121°31'38",海拔高度為4米。 各站相對位置見圖 10。由上述氣象站及航空站的 經緯度計算,綠島自動氣象站在綠島航空站南南 東方約 2.2 公里處;蘭嶼氣象站在蘭嶼航空站東 北東方約 2.57 公里處。因兩處之航空站與氣象站 大氣科學

圖 10 (a)中央氣象局所屬之小琉球、綠島和蘭嶼氣象站位置圖和(b)綠島之自動氣象站和航空站及蘭嶼氣象站和航空站相對位置圖。綠島自動氣象站在綠島航空站南南東方約 2.2 公里處;蘭嶼氣象站在蘭嶼航空站東北東方約 2.57 公里處。

水平距離相去不遠,因此將其兩地資料視為似鐵 塔觀測進行分析。

(一) 小琉球

圖 11 為 2014 年 5 月 5 日 2~14 時(地方時) 小琉球自動氣象站 15 分鐘間距風場、氣壓、溫度 和相對溼度變化。在風場觀測方面,因四周有些 樹叢,所以風速一般偏弱(在 5Kts 以下),然而 在鋒面過境前後風向變化明顯。在 6 時前風向均 為東南風,6 時 15~45 分轉為西南風,7 時風向 驟轉為北風。衛星雲圖顯示(見圖 4a),有一甚淺 的雲線(虛線所示)向東北伸經小琉球。由此推 測,索雲線於上午 7 時已過境小琉球。隨著索雲 線向東南移,風向轉為北至西北風。氣壓自 4 時 30 分之 1002.9hPa 上升至 6 時 45 分 1004.3hPa, 平均每小時上升 0.7hPa。6 時 45 分快速上升,至 08 時上升至 1005.6hPa,約每小時上升 1hPa。鋒 後的高壓強度持續約 3 小時,至 11 時後才下降。 此外,氣壓變化顯示,在鋒面(索狀雲)過境期 間,氣壓呈現兩階段(6 時 15 分至 7 時及 7 時至 7 時 45 分)上升。

氣溫在索狀雲形成並抵達小琉球前 2 時 30 分開始上升,自4時45分的24.8℃上升至6時 45分達26.0℃最高(2小時增加1.2℃),之後快 速降低,在短短15分鐘(7時)下降3.1℃(26.0℃ 降至22.9℃),此時正是索雲線過境。之後緩慢下 降,於7時15~45分達22.7℃為最低。之後快 速上升。相對溼度顯示,不論鋒前或鋒後均很潮 濕,僅在鋒面抵達3小時以前,相對溼度稍低, 但尚為95%以上,之後則達100%。

温度(紅色線)和相對溼度(綠色線)變化。風桿表示風向;風羽表示風速,全長每根代表10浬/時,半羽 代表5浬/時,無風羽者僅表示風向但風速微弱。

(二) 綠島

綠島自動氣象站及綠島航空站之風場(圖 12) 顯示, 不論是氣象站(圖 12a) 或航空站(圖 12b),風向均急劇變化,於7時30分順轉,風向 由偏南風(南南東/南南西)轉為西南風,7時40 分後急轉為北北東風。衛星雲圖顯示,雲線 B 形 成之初,因在其後方有具組織的 MCSs 存在,其 卷雲砧模糊了此雲線,至5日0100UTC,隱約在 雲帶前緣有比前些時刻較明顯的東西走向邊界 (雲線 B)(見圖 5c~5e)。因此,索雲線於 7 時 30 分至 7 時 40 分過境也是合理。雖然綠島自動 氣象站和航空站相距不遠(氣象站在航空站南南 東方 2.2 公里處),但在索雲線過境前後之風速則 大異其趣,航空站約為15Kts,氣象站僅約為5Kts。 然而,氣象站所在高度(海拔高度 304 米)比航 空站者(海拔高度27米)為高,此是否顯示南來 的暖溼空氣厚度很薄的緣故。不論低層(航空站: 高 27 米)或高層(氣象站:高度 304 米),在雲

線後方的風向均為東北至北北東風,且風速也相當,均為 25~30Kts,顯示有較深厚的冷空氣下衝,外流之冷空氣下衝抬升前緣之暖溼空氣形成 索狀雲線(Seitter and Muench, 1985),索狀雲線於 雷達回波清楚可見(圖7~9)。

至於氣壓,由於航空站的時間解析度較氣象 站高,因此航空站較能顯示小尺度的擾動。綠島 航空站顯示,在雲線抵達前2~3小時就緩慢上升 (2小時上升2.6hPa:5時的1008.4hPa→7時的 1010.0hPa),雲線抵達前半小時至抵達時急遽上 升(0.5小時上升2.5hPa:7時15分1010.0hPa→7 時45分1012.5hPa)。在過境期間,氣壓強度 (1012.5hPa)維持10餘分鐘,之後再度上升至 1013.6hPa(40分鐘上升1.1hPa)。由此顯示,在 雲線過境前後短時間內,氣壓也和小琉球者一樣, 有兩階段的上升。綠島自動氣象站顯示,與航空 站氣壓變化在雲線抵達前的氣壓變化與航空站類 似,2小時就快速上升(2小時上升2.4hPa:5時 50 分的 997.8hPa→7 時 50 分的 1000.2hPa),雲線 剛過境時氣壓陡降,過境後 1 小時降至最低後驟 升。雲線後方氣壓均在 1000hPa 以上,高於過境 前。

氣溫觀測顯示,氣象站與航空站的溫度變化 相當一致,唯航空站的溫度較高且有較細節的變 化,此因氣象站高度較高及航空站的資料時間解 析度較高之故。此外,氣象站(6時30分)的溫 度較航空站(7時30分)者早一小時達最高,此 顯示比近地面稍高的高空冷空氣越過冷鋒,顯然 不利於冷鋒強度的維持,冷鋒也因此變窄、變薄。 在索狀雲過境前,就綠島航空站而言,從抵達前 6小時的25.9°C至抵達前一刻增加至26.7°C(6 小時增加0.8°C),索狀雲過境前後,溫度驟降,

40 分降 4.1°C (7 時 30 分之 26.7°C 降至 8 時 10 分之 22.6°C)。索狀雲過境期間溫度降至最低後有 短時間的跳動後上升,約在 23.5°C。一般而言, 溫度在過境後遠比過境前為低。而氣象站,從抵 達前 6 小時的 24.5°C 至抵達前一小時增加至 25.6°C (5 小時增加 1.1°C)。索狀雲過境前後,溫 度由 25.6°C 降至 21.5°C (在 1 時 40 分內下降 4.1°C;相當於每 1 小時降 2.4°C)。過境後亦有短 時間的跳動後上升,約在 22.5°C,約比較低的航 空站低 1.0°C。

相對溼度觀測(航空站)顯示,不論索狀雲 前方或是後方,溼度均在88~94%左右,離索狀 雲越近,相對溼度越大。降雨方面(綠島自動氣 象站),索狀雲前無降雨紀錄,降雨在索狀雲過境 期間至過後的3小時內,最大在過境後的1小時, 為10.0mm,其它時間分別為1.0mm和0.5mm。

(三) 蘭嶼

衛星雲圖顯示,雲線 A 於 5 日 0200UTC 併 入雲線 B,於 0230~0300UTC 過境蘭嶼(見圖 5d 及 5e)。而蘭嶼航空站之風場觀測(圖 13b)顯示, 風向由 10 時的西風轉至 10 時 20 分的西北風, 由此推斷,雲線 B 在 10 時 10~20 分間過境蘭嶼 航空站是合理的。在雲線過境前風速不強,約為 5Kts。然而,風向是多變的,在雲線抵達航空站 前 8 小時至前 2 小時 20 分,風向由南南東轉為 南至西南,之後不久就轉為南南西至西,且西風 持續兩小時。雲線過後,風速增加至 10~15Kts, 風向也由短暫(約 50 分鐘)的西北風(風速約 10Kts)轉為東北風,風速也增強(風速約 15Kts)。 蘭嶼氣象站風場(圖 13a),風向由 10 時 20 分的 西南風轉至 10 時 40 分的西北風,因此,雲線在 10 時 30 分過境蘭嶼氣象站是合理的,顯然鋒面 通過航空站稍早於氣象站 10~20 分,此乃因氣象 站較航空站高約 320 米(見圖 10b)。鋒前和鋒後 風速均強,唯鋒後(15~25Kts)較鋒前(15~20Kts) 稍強。至於風向的變化不像航空站那麼複雜,僅 由南南西/西南(鋒前)轉為北北東/北風(鋒後)。 由上分析顯示,較高的氣象站(海拔高度 324 米) 比較低的航空站(海拔高度 4 米)風速較大且風 向變化較單純,顯然地形效應在此扮有部分角色。

兩處氣壓隨時間變化,一般而言,航空站(圖 13b)和氣象站(圖13a)兩地之氣壓變化趨勢是 十分一致。氣壓由在鋒面抵達前7小時(約在深 夜3時30分)的最低,隨著接近蘭嶼而增高,至 鋒面抵達前約1.5小時達相對最高,之後開始下 降,至鋒面抵達前約半小時達相對最低後上升, 鋒面過境後上升,過境後1小時達最高後緩慢下 降。一般而言,氣壓在鋒面過境後比抵達前要高。 此兩處的氣壓變化,在鋒面過境期間均顯示兩階 段的上升。

氣溫觀測顯示,兩處的溫度變化趨勢也和氣 壓變化者一致。不論蘭嶼氣象站或蘭嶼航空站, 溫度隨著鋒面的到達而增加,至鋒面抵達前約半 小時達最高(航空站:28.8℃;氣象站:26.3℃) 後快速降低,在鋒面過境期間,航空站的溫度從 9時50分的28.8℃降至10時30分的26.8℃(40 分中降2℃);氣象站也在9時50分達相對最高 的26.3℃降至10時30分的24.0℃(40分中降 2.3℃)。之後又快速上升,在11時達最高,航空 站為29.2℃,氣象站約為27℃。之後就快速降低, 唯氣象站比航空站降的較快。然而,在鋒面過境 約半小時,兩站的溫度卻遽增且達最高,此與一 般鋒面過境後的溫度變化不同,為何如此尚無足 夠資料來解釋。 相對溼度也顯示兩處變化趨勢也類似,但氣 象站者較航空站為溼。在索狀雲抵達前1小時, 兩站的溼度即開始降低,至過境後半小時降至最 低,航空站降約20%(90%→70%)比氣象站15% (95%→80%)為大。相對溼度最低的時刻與溫度 最高的時刻一致。圖13又顯示,兩地鋒前較鋒後 為溼,氣象站也較航空站為溼。

四、討論

衛星雲圖(圖4)顯示,索狀雲-A、索狀雲-B和索狀雲-A+B分別於4日2300UTC、5日0000UTC和0230UTC通過小琉球、綠島和蘭嶼。 上述三個氣象站觀測(見圖11~13)均指出,在 索狀雲過境期間的天氣現象為風向劇變、氣壓驟

升、溫度劇降,此與冷鋒過境相同。因此,索狀 雲的位置就是冷鋒所在。由於索狀雲僅數公里寬, 因此它是唯一可精確指出冷鋒位置的指標。

由於索狀雲是一狹而淺的雲系,紅外線衛星 雲圖(圖 lb)幾乎不能指出其雲頂高度,雷達之 RHI 回波在此方面可扮演角色。圖 14 分別墾丁雷 達站 265 度方位角(圖 14a) 及 75 度方位角(圖 14b)。前者可指示台灣西側索狀雲(雲線A)的 高度,而後者可顯示台灣東側索狀雲(雲線 B) 的高度。圖 14a 指出,在墾丁西方~55 公里範圍 内,除46~48公里間無回波外,其餘各區均有強 度不等的回波,較強者在27~30公里、33~43公 里和 50~55 公里處。其回波高度約在 2~3 公里。 方位角75度(圖14b)包含4次觀測的回波,分 別在雷達至東北東方 20~23 公里(0055:26UTC)、 32~47 公里(0125:25UTC)、52~55 公里(0149: 26UTC)和 70~75 公里(0207:25UTC)處,其回波 高度約在 3~4 公里。顯然,東西兩側索雲線之對 流特性是有不同,西側沒發展,東側可能與其他

系統產生交互作用而發展。

探空資料(圖15)指示大氣之水氣垂直分布, 雖然索狀雲-A 通過的小琉球時無高空觀測,但在 其北北東方約40公里處有屏東探空站(46750) (22.69°N;120.47°E)。此距離及雲帶的移動速度 (移速~8.3 ms⁻¹)估計,為雲帶過境(4日 2300UTC)後約2小時,因此5日0000UTC之屏 東探空和馬公探空(圖15a、b)可做為鋒面(索 狀雲)過境小琉球之鋒區和鋒後大氣垂直變化。 而5日0000UTC之緣島探空和花蓮探空(圖15c、 d)可做為鋒面(索狀雲)過境緣島之鋒區和鋒後 大氣垂直變化。

小琉球氣象站之相對溼度觀測,在雲線-A 抵 達小琉球前5小時,近地面相對溼度已達95%, 且急速增加,至抵達測站前約3小時(5日4時) 已達飽和,且直至過境後9小時仍達飽和。換言 之,在鋒前約100公里至鋒後至少300公里達 100%的相對溼度,此似與陳和紀(1978)分析梅雨 季鋒面影響台灣南部的範圍(鋒前200至鋒後500

圖 14 2014-05-05 墾丁雷達站回波(a) 0031:29UTC 265 度方位角之 RHI 及(b) 0055:26 UTC、0125:25UTC、0149:26UTC 和 0227:25 UTC 4 個時間點 75 度方位角之 RHI(時間標示於圖上)。橫軸為距離雷達之公里數,縱軸為高度(公里)。

圖 15 2014 年 5 月 5 日 0000UTC 之(a)屏東(鋒區) 和(b)馬公(鋒後)(c)綠島(鋒區)(d)花蓮(鋒後)探空觀測。

公里)相當。屏東探空(圖 15a)顯示,LCL 在 1003hPa,即在鋒前(區)近低層就達飽和,顯示 此索狀雲的形成只要小量的抬升即可。LCL 以上 呈現明顯的沉降逆溫,相對濕度隨高度急速減少, 因此雲系發展不高。馬公探空(圖 15b)顯示,除 近地面外,鋒區和鋒後氣溫相當均約為 17℃,一 般而言,在 750hPa 以下,鋒後之溫度較鋒區為 低。至 950hPa 鋒區仍維持在 17℃,而鋒後降至 13℃。之後,屏東探空站溫度隨高度降低,而馬 公探空站隨高度增加,至 900~950hPa 鋒面逆溫。 平均而言,鋒後比鋒區冷約 3℃。

索雲線-B從抵達綠島前6小時,綠島航空站 之相對溼度約為88%,隨著雲線的接近而增加, 至抵達前3小時達94%,持續至過境後1小時, 之後緩慢下降,至過境後3小時尚在88%以上, 在過境4小時後降至85%且持續至鋒後6小時(圖 12)。綠島氣象站之降雨觀測顯示,鋒前無降雨紀 錄,降雨在過境期間至過後的3小時內,最大在 過境後的1小時,為10.0mm,其它時間分別為 1.0mm和0.5mm(見圖12a)。顯然,降雨發生在 雲線至雲線後方100公里內,最大發生在30公里 內。綠島探空資料(圖 15c)顯示,985hPa~950hPa 溫度露點差約為 0.5°C 以下,及相當潮濕(95%以 上)。950hPa 以上為沈降逆溫,顯然相對濕度隨高 度急速減少、混合比隨高度之遞減率變大。由探空 曲線觀測獲得舉升凝結面(LCL)974hPa、自由對流 面(LFC)941hPa 和平衡面(EL)843hPa。一氣塊從 地面抵達941hPa 的 LFC,但對流將被 EL 抑制, 顯然激發的對流的高度不會太高。

花蓮探空(圖 15d)顯示,在 970~920hPa 溫 度及露點均無變化,也可以說有鋒面逆溫但甚為 微弱;在 920~810hPa 溫度無變化,但露點在 920 ~850hPa 降低不大,850~810hPa 降低較大,也 可以說有下沈逆溫但也甚為微弱。與綠島探站比 較,在 600hPa 以下,花蓮探空站(鋒後)溫度均 遠較綠島(鋒區)為低,即鋒後有深厚的冷空氣 (註:花蓮探空位於鋒後、綠島探空位於鋒前), 平均而言,鋒後比鋒區冷約7~8°C。風隨高度分 布顯示,風向從地面之東北風至 850hPa 隨高度逆 轉為西南風,顯然在 850hPa 以下有明顯的冷平流。 940hPa 以下為東北風和西北風的北向風,900hPa 轉為西風,在該高度之上微弱順轉,轉為西南風, 至 780hPa 轉為西風,之上至 760hPa 為西北西風, 之後為偏西風,因此在風切線在 780hPa。

Purdom (1973)分析 1972 年 7 月 30 日清晨一 由雷暴引發之清晰中尺度高壓(meso-high)個案, 該中尺度高壓外邊界,在衛星雲圖可顯現為弧狀 雲。該外流邊界/弧狀雲於7月30日1620UTC通 過德州博蒙特(Beaumont, TX.),在其過境時的地 面觀測顯現為:風向改變、氣溫下降及氣壓陡升 的現象。此種天氣特徵和本文所分析索狀雲通過 小琉球、綠島和蘭嶼三個氣象站所顯現者極為相 似,兩者都因冷空氣下降產生密度流抬升前方的 低層暖溼空氣而形成,唯索狀雲為冷鋒抬升,厚 度淺,而弧狀雲與雷暴引發的中尺度高壓有關。 顯然造成弧狀雲下衝流可能比造成索狀雲者強, 此可利用 Goff (1976)和 Seitter and Muench (1985) 建立的概念模式(圖16a、b)來説明。索狀雲過 境期間之氣壓隨時間變化(圖 11、12 及 13)呈 現兩階段的上升,此表示伴隨索雲線的鋒面與雷 暴陣風鋒面面過境期間可所顯現的現象相似 (Wakimoto, 1982) °

將每個時間衛星雲圖上索狀雲之前緣描繪於 一幅圖上,就可以檢視其運動軌跡(圖17)。由其 軌跡來看,索狀雲呈穩定性移動,其平均移速約 為8.3 ms⁻¹,幾與盛行風相當。另,也可利用 Seitter (1983)的密度流(density current)速度方程獲得。利 用5日蘭嶼氣象站地面觀測(圖18)開始降溫(A) 到升溫(B)兩點間的壓力差為計算密度流速度 (Seitter 1983),

V = k*(dP/密度)**0.5

k=2**0.5=1.414,dP=0.5hPa=50pa,密度 =1.2 kg m⁻³,可得 V=9.1 m s⁻¹,該值似乎比實際 風及追蹤雲線軌跡(8.3 m s⁻¹)大些。測站的風速是 10 分鐘的平均,軌跡速度也是較長時間的平均, 因此由密度流方程得到之結果也相當合理。

五、總結

本文利用衛星雲圖、雷達回波,高時間解析 度地面觀測,以及探空資料,對2014年5月5日 過境台灣南端近海之狹而淺的索狀雲進行分析。 獲得之初步結果如下:

- 索狀雲過境期間,風向劇變、氣壓驟增及溫度 劇降的特徵,此與冷鋒過境者相同,因此索狀 雲為確定鋒面相當好的指標。
- 在索狀雲過境期間,氣壓具有兩階段上升的特 性,此與雷暴陣風鋒面過境期間所顯現的現象 相似。
- 3. 索狀雲之移動速度,由衛星雲圖軌跡求得為8.3 ms⁻¹,密度流公式計算而得之密度流速度為9.1 ms⁻¹。密度流速度比實際風速及雲線軌跡速度 大些。測站的風速是10分鐘的平均,軌跡速度 是較長時間的平均,因此由密度流方程算出結 果稍大些似乎合理。
- 4. 台灣東西兩側索狀雲的結構有異,西側較淺, 其強度最強時的回波頂高度約為2~3公里;東 側較強,最強時的回波頂高度約為3~4公里。
- 5.降水從冷鋒後雲帶降下產生冷池,冷空氣下衝向外擴散抬升前方淺薄的暖溼空氣形成索狀雲。
- 6. 就索狀雲形成機制觀之,其形成機制非常類似 弧狀雲的形成過程,兩者都因密度流而成。索 狀雲因冷鋒抬升而成,而弧狀雲則由陣風鋒面 抬升,因此弧狀雲似乎比索狀雲者強。

台灣地形複雜,暖季期間經常有尺度小但產 生豪大雨的事件發生,僅用單一資訊,例如僅利 用模式或雷達等等,除無法解析此種天氣系統之 形成與演變外,更無法對此等系統造成的天氣做

圖 16 (a) 雷暴外流邊界和陣風鋒垂直結構示意圖(摘自 Goff, 1976)及(b)索狀雲形成機制概念模式(摘自 Seitter and Muench, 1985)。

圖 17 索狀雲運動軌跡(2014年5月4日2300UTC至5日0630UTC)。

圖 18 2014 年 5 月 5 日 02-14 時(地方時)蘭嶼氣象站地面觀測資料,橫軸為時間(小時),縱軸黑色為氣壓(hPa)、 紅色為溫度(C),圖上方藍色為風場。開始降溫(A)到升溫(B)兩點間的壓力差計算密度流速度。 出更好的預報。因此,結合各種資料,特別是高 時空解析度的衛星資料、雷達資料及短時距的地 面觀測等是必要的。

誌 謝

本研究得以順利完成要特別感謝中央氣象 局、民航局氣象中心、及空軍氣象聯隊提供寶貴 氣象資料,並感謝楊菁華小姐、陳奕翰先生、曾 鵬潔先生多方協助。特別感謝編輯委員及兩位審 查委員的審查,並且提供諸多的建議及修改,使 得本文科學性大為提昇。最後,感謝中國文化大 學大氣科學系提供資料分析所需的設備,以及中 央氣象局 MOTC-CWB-104-M-04、1042153C,科 技部 MOST 104-2625-M-034-001、MOST 105-2625-M-034-003 的支持。

參考文獻

- 紀水上,2014:卷雲雲型研析及其在劇烈天氣分 析與預報之應用。103 年天氣分析與預報研 討會。
- 陳泰然、紀水上,1978:台灣梅雨鋒面之中幅度 結構。*大氣科學*,5,1,35-47。
- Fujita, T. T., 1955: Results of detailed synoptic studies of squall lines. *Tellus*, *7*, 405-436.
- Fujita, T. T., 1959: Precipitation and cold air production in mesoscale thunderstorm systems. *J. Meteor.*, 16, 454-466.
- Goff, R.C., 1976: Vertical structure of thunderstorm outflows. *Mon. Wea. Rev.*, *104*, 1429-1440.
- Ito, Mamoiu, 2002: Analysis and use of meteorological satellite images. Meteorological Satellite Center, Japan Meteorological Agency. P.38-39

- Janes, S.A., Brandli, H.W., and Orndorff, J. W., 1976:
 "The Blue Line" Depicted on Satellite Imagery. Mon. Wea. Rev., Vol. 104, 1178-1181.
- Lenz, A, K. M. Bedka, W.F. Feltz, and S. A. Ackerman, 2009: Convectively induced transverse band signatures in satellite imagery, *Wea. and Fore.* 24, 1362-1373.
- Obana, R., 1983: Analysis and application of Cloud Image from the Meteorological Satellite HIMAWARI, Meteorological Satellite Center, P. 65-67.
- Purdom, J. F. W., 1973: Picture of the Month: Meso-Highs and Satellite Imagery. *Mon. Wea. Rev.*, 101, 180-181.
- Seitter, K.L. 1983: The effect of arc cloud generation on thunderstorm gust motion. *Preprints 13th Conf. on Severe Local Storms*. Tulsa, Amer. Meteor. Soc., 249-252.
- Seitter, K.L. & Muench, H.S. 1985: Observations of a cold front with rope cloud. *Mon. Wea. Rev.*, *113*, 840-8.
- Shaughnessy, J. E., and T. C. Mann, 1973: Picture of the Month: Frontal rope in the North Pacific. *Mon. Wea. Rev.*, 101, 774-776.
- Wakimoto R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. *Mon. Wea. Rev., 110, 8,* 1060-1082.
- Woods, V. S., 1983: Picture of the Month: Rope cloud over land. *Mon. Wea. Rev.*, 111, 602-607.,

Analysis of Rope Cloud Lines Associated with Cold Front Passing South Side of Taiwan

Shui-Shang Chi^{1, 2} Ching-Hwang Liu¹

¹ Department of Atmospheric Sciences, Chinese Culture University, Taipei, Taiwan ² Center for General Education, Aletheia University, Taipei, Taiwan

(manuscript received 9 January 2017; in final form 5 April 2017)

ABSTRACT

Rope cloud lines triggered by cold front passing south side of Taiwan are visible on the satellite imageries on May 5, 2014. The cloud line passed the Little Liuchou, Ludao and Lanyu on 2300UTC May 4, 0000UTC, and 0230UTC on May 5, respectively. In this study, this rope cloud formed at the leading edge of cold front and subsequent transition are analyzed by satellite imageries, radar reflectivity, and surface observations from these three islands. Results show that the wind direction changes, pressure rises and temperature drops dramatically during the passage. The transition tendencies well match the characteristics of cold front passing which suggests that rope clod lines are good indication of the leading edge of cold front. In addition, the pressure showed two-step rises which is similar to the gust front produced by thunderstorm.

Tracking the cloud lines movement from visible satellite imageries, the translation speed is estimated about 8.3 m s-1. On the other hands, using density current formula and surface observation, the speed is about 9.1 m s-1. This speed is slightly higher than the actual wind speed from the surface. However, the surface wind is 10-minute average which suggests that the density model seems applicable.

The vertical extents of the cloud lines are quite different between the east side and west side near the southern Taiwan tips. The radar reflectivity shows that the echo top at west side is about $2\sim 3$ km, however, it may extend up to $3\sim 4$ km at the east side. These rope cloud lines are formed at the southern side of the cold front due to the cold air outflow originated from wide broad area of descending precipitated air at the cold front. This cold air produces a cold pool pushing the cold air out and lifting the warm moist to form the cloud line. This mechanism is similar to the formation of arc cloud. Although both types of cloud are formed owing to the density current, the fundamental difference is rope clouds formed due to the cold front lifting and arc cloud formed due to gust front lifting. Hence the arc cloud may much stronger than the rope clouds.

Key Words: Rope cloud, Gust front, Arc cloud, Density current, Cold pool, Downdraft. doi: 10.3966/025400022017034501001