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On Slope Winds
by
Li Peng

ABSTRACT

The equations of shallow convection are applied to the investigation of the circulations
in a stable atmosphere above a V-shaped valley. For simplicity, the motion is assumed
to be uniform along the valley and symmetric about the vertical planes passing through
valley-and ridge—axis. The heating or cooling of the sloping ground is simulated by prescribing
the variations of ground temerature. Two numerical integrations of the equations have
been carried out for upslope-and downslope-winds separately. The results show that:

a) the peak intensity of the circulation in daytime leads the maximum ground tempera-
ture nearly two hours;

b) the highest upslope velocity occurs above the upper half of the slope at a definite
distance less than fifty meters from the slope and maximum vertical velocity is directly
above the ridge;

¢) the thickness of the upslope winds is within the range of 100 to 200 meters, changing
accordingly with the intensity of the circulation;

d) in the early stage of the development of the upslope winds, the potential energy of
the system increases with time because of subscale diffusion process, but after the slope
wind is fully developped, it decreases with time mainly due to subscale diffusion, only a small
portion of the reduction is transformed into kinetic energy;

e) the nighttime downslope wind is much weaker and shallower and reaches its maximum
intensity much faster than the daytime upslope wind;

f) the returning flow is much weaker but of greater thickness than the slope wind. These
results are in good agreement with observations summarized in Defant’s review article (Defant,
1951) and Geiger’s book (Geiger, 1957).

1. Introduction on the average, the slope wind speeds amount
The topographical variations of a mount~ to about 2 to 4m/sec according to measure-
ainous terrain exert inportant influences on ments. The highest velocity does not occur
the local climate. Particularly, the inclined close to the slope surface but at a definite
mountain slopes act as heat sources in daytime distance from it. Higher up, it rapidly decre-
and heat sinks in nighttime and, consequently, ases again.
generate diurnal variations in solenoidal field A theoretical account for thermal slope
and local circulation. According to the observa-— winds was first given by Prandtl in 1942 (see
tions summarized in Defant’s review article Defant, 1951). He considered an inclined slope

(Defant, 1951) and Geiger’s book (Geiger, of infinite extent on which the deviation of

1957), the winds blow uphill in daytime, start potential temperature from a level stratification
about a half hour after sunrise, reach their is only a function of the distance normal to
greatest intensity at the time of maximum the slope, so that the problem was made one-
insolation, and reverse their direction in the dimensional and linear. The steady solution of

evening. The thickness of the siope wind layer _ this simplified problem found by Prandtl, in

!
A

generally lies between 10C and 200 meters, and, | terms of the angle of inclination, the stability,
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Fig. 1. Mountain-valley profile.
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and the coefficients of heat conduction and
turbulent friction, well explained the variation
of slope winds in the direction normal to the
slope. Later Defant extended Prandtl’s steady
solution to include the time-oscillatory nature
by simply multiplying, as a first approximation,
the

Because of their lineir and one-dimensional

steady

solution by the factor cosft.

nature, Prandt!’s and Defant’s solutions can
not account for the detailed structure of the
thermal circulations on natual slopes of finite
length, especially the variations of wind and
temperature along the slopes which evidently
are very important to microclimatology.

A numerical study ef thermal upslope winds
were made by Thyer and Buettuer (1962) as
part of their study of mountain-valley winds
in the V-shaped valley. However, they enco-
untered the dificulties of computational insta-
bility and were unable to integrate the equa

Orville (1964) used
the mountain-plain profile

tions beyond two minutes.

consisting of a
mountain of 1 km high with a 45° ¢lope and a
level plain 2 km long extsnding from the base
of the mountain. Two cases of upslope winds

were studied, one in a neutral environment,

the other in a slightly stable environment.
Respectively a bubble and a columnar shaped
convection were formed over the mountain
slope. Both integrations were terminated before
the caps of the respective rising bubble and
column over the mountain nearly reached the
solid upper boundary.

The main purpose of the present paper is
to present some results of numerical simulation
The

investigation represents partial results in a.

of the evolution of thermal slope winds.

continual study of orographical infiuences on

local circulations and. airflows. In order to
achieve long time-integration enough to show
the evolution of thermal slope winds, we
consider an atmosphere of normal stratification

above a mountain slope of gentle inclination.

The results are to be compared with observat-
ions and previous numerical experiments.
2. The medel
2.1. The equations
The equations used in the model are the
following:

01_

~JCom+-5 ~—+*<H ayz



60 626’

=—J(¢, o’)+KH +kz P @
_ 0%, 0%
1=t oy? 3

where 7 is vorticity, ¢ is stream function, 6 is
potential temperature deviation from a reference
state, @, g is the acceleration of gravity, Kgm
and Kz
vertical eddy coefficients for
and heat diffusion, J

respect to y and z.

are respectively the horizontal and
both momentum
is the Jacobin with
In these equatione, the
Coriolis effect is neglected because of small
All x-derivatives are also

horizontal scale.

neglected by assuming that the mountain
ranges are very long in the x-direction. These
equations are the same as those in Orville’s
model. They are solved numerically under the
boundary and initial conditions to be given
below. The velocity components in the y-and
z-direction may be obtained by
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respectively.
2.2. Mountain-valley profile and boundary con-
ditions

We consider an east-west oriented valley
with the cross-valley profile shown in Fig. 1.
Reflective symmetry about the vertical plane
through the valley axis is assumed so that the
solution in the right half plane is just the
mirror image of the left. To cover one half
domain in the Y-Z plane, we use M+2 equally
spaced (dy) grids in the cross-valley direction
and N+1 equally spaced (8z) grids in the
vertical. The grid distances are so chosen that
the ratio 8z/0y is equal to the slope of the
mountain and that the mountain top is (M-1)¢8z
above the valley floor.

For the upper boundary conditions, we
assume that at a sufficient height above the
ground all perturbations are negligible.

7=¢=0, and 9/ = cconstant at z =Z. (5)
Along the lateral boundaries, reflective symm-

etry is assumed. In other words,
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0/18=0"2x, $1x=—2x, Tig=—"2x 6

0’8k =0'Nng, YNE=—0N41K, TNE=~—Tn+1k (7)
for all k. Along the ground surface,

$=0 ®

The potential temperature change at the ground
surface is the driving agent of the motion and

is specified as follows.

. t-2
0/ =0(z)+(0*—az) Smﬂ4c3200) at z=zg; (9)

where the first part is the initial temperature
stratification and the second part represents
the diurnal change (t is time in seconds). Vor-
ticities at the gound are predicted by Eq.
(1) using the diference schemes in 24.
2.3 Energy equations

Multiplying Eq. (1) by -¢, Eq. (2) by-
gz/®, and integrating the resultant equations
over the domain shown in Fig. (1), we have,
after making use of the boundary conditions

EqS. C5)—'CS),

L[ fortTaydz = ¢ — D a0
and
A [ o8 ay0 = —c + F  ap
where
¢ =22 { [o'wdyde a
D =”oo{Ku[<A§-§->2+c 0¥ 3 +Kal
C ) +C* -—)*]}dydz s
F =BH—BG+BM+G 14)
Ba =*§*J‘OZGKHCZ'%OZ: Yslopenodz (15)
Bo =—g—f(Kzal;"K)z,pody (16
Biop=—2 -I(K 9267 oody an
G =28 [ 0oKa(0.~0.2)dy 18
Zs is the height of mountain peak, and 0o is

the mean density in the domain. Combining
Eqs. (10) and (11), we have
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Clearly, the left hand side of Eq. (10D is the
total ketinic energy, D, kinetic energy dissipa-
tion, C, conversion from potential to kinetic

energy, —gz0’/®, the potential energy in the

system, and Bu, Be, Biw and G, all due to
subscale diffusion process, are respectively
horizontal fluxes from the lower boundary,

upward flux at the top and the generation of
potential energy within the domain. If Ku and
Kz are set equal to zero, the total of kinetic
and potential energy will be conserved.
2.4. Finite difference schemes
a. Space difference scheme. At interior grid
points, the buoyancy and diffusion terms in
Egs. (1D)—(2) are computed by centered diffe-
rence scheme. At the lower boundary points,
the buoyancy term is approximated by one-side
differencing and the diffusion terms are appro-
ximated by 2Grad/5 where Grad stands for
one-side gradient of 7 87 and & for 8y or dz.
For the Jacobian in Eq. (2), we use
Te(C,00={(dy+1,x ~¥yx 41007 itk 41+ (Dy-1,x
—y,x-100" - 1k-1 — (L) 1,k —Dy,k41007 - 1,042
—(yste— 3x-106"y 41,61} /A8y S2
and for the Jacobian in Eq. (1),
Ty, m)=2{(yst,x =L yx 410741,k 41-= (Dy-1,x
— k1)1, x—1— (o1,
— G+ D)Ty =1,k 41— (g 41,k
~ Pk 31x-1— (k41
F it ki1 — gk 1— )itk 10741,k
+(y—tks1F k1 —dy_1,5-1
—I5k-DT -1, F (gt e F Lia1,k41
~ itk =y ks 1 )75, 401— (P a1,k-1
+yatx— s,k 1—Ly_1,%)7),x -1}
/126y62 an
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where 1 at interion points

8/5 at the mountain top
P along the mountain slope
8/3 at the bottom of the valley
and presumably 7 and ¢ assume zero values at

grids below the ground surface. The finite

difference forms adopted for the Jacobians
conserve the area integrals of 6/, 672, 7, 7% and

kinetic energy in a closed domain if they are

combined with forward time differencing
(Arakawa, 1965).
b. Time difference scheme. Two finite

difference schemes have been tried for upslope
wind case, one, simple forward time diffefence,
the other, Euler-backward. No significant diff~
erences were found before the calculations
were terminated at t = 7 hr. For the down-
slope wind case, simple forward time difference
was used.

2.5. Methed for solving Eq. (3)

Eq. (3) is directlysolved for ¢ through the
adjustment matrix which is defined as follows:
For each n (n = 1,2,------ , M), setting

Smner = O, m = 1, 20000 .M,

and

and the laternal boundary conditions for ¢, and
denote the obtained values of ¢ at the ground
grid points by bw,n. Clearly, the set of bm,a
for all n form a square matrix. It can be
shown that this matrix has an inverse. We call
the inverse the adjustment matrix and denote
its element by am,». To solve Eq. (3), we start
with ¢prst = 8 = 0, for j = 1 to M, and
calculate from Eq. (3) and
conditions Egs. (6)-(7) the wvalues of ¢yw-1,
Denote the values of ¢ at the

the boundary

¢y,n-2, etc.
ground grids by R,. If every R, is zero or
within a tolerable error limit, the calculated ¢
is the solution. In general, this is not true and
each ¢yx, to

we must go back to adjust

substract from it an amount of &), say, in
order that the new ¢« to be caiculated in the
same way will be the solution. It is readily

seen that the required adjustments &), j=1 to



M, must be the solution of

bm,385 = Rm, to M.
Hence,

& = ajmRm, J=1 to M.
Since the adjustment matrix is independent of
7, we need to calculate it only once. This
method, therefore, is far more economical than
other iterative or relaxation methods. It came
to our attention in the later stage of our study
that this method was called
sweep-out method” by Hirota et al (1970).
2.6. Initial conditions and parameters

“generalized

The initial condition for potential temper-
ature deviation is the following:

6’ =0’0+72=06s), at t=0
where 8o’ and 7 are contants’ The initial vort-
icity field is zero everywhere, in other words,
the atmosphere is at rest initially.

The parameters adopted are the following:

dy=250m
6z=50m

8 =297°K

Z =2500m
M=11

N =50

g =9.8m/sec

Kz=10m?*/sec
Ka=Ka(sy)*/(82)*

6o=—4°C

7 =0.004°C/m
g*=5°C

a =0.004°C/m

12 =0 for the case of upslope winds,
43200 for downslope winds
3. Results
3.1 Upslope winds
The initial conditions given in 2.6 approxi-
mate the state of atmosphere at 8:30 in the
morning when the nighttime downslope winds
have completely died out, the surface tempe-
rature inversion has disappeared. and the
stratification of the atmosphere has come close

to the mean. Starting from the initial condit-
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ions, the set of equations given in section 2
has been integrated with 2 = O for nearly
seven hours of physical time. Fig. 2 shows the
time variation of maximum horizontal vele¢ity,
which also represents the intensity change of
the  thermally

vertical velocity is much smaller than the

induced cireulation, for the

horizontal component. Clearly, upslope- winds
are built up as the temperature on the 'slope
surface is increased by insolation. The wind
reaches its peak value in about four hours,
leading the maximum surface temperature
almost 2 hours. The decaying stage takes less
time than the developing. The evolution is in
good agreement with the summary of observa-
tions mentioned in the introduction.

The thermal circulation starts with the
center of streamlines located at the lower half
of the slope. As intensifies continually, the
center of streamlines moves up and away from
the slope. It reaches the highesst position, 300
m above the slope, when the upslope wind
down below attains the maximum intensity of
2.9 mps. Then it moves down and toward the
slope, tending to complete a loop, (see Fig. 3).
The upward part of the trajectory is similar
to Orville’s result in a slight stable atmosphere,
where the streamline center ascended much
faster and: showed no tendency to move away
from the ridge axis before the computation’
was- terminated as the center came close to'the
upper boundary. These differences between
Orville’s and our results may be due to the
fact the initial stratifieation is more stable

and -the mountain slope gentler in our model
than in Ogville’s.

As the wupslope wind intens~ifies, its
thickness increases accordingly. As the wind
weakens however, the.thickness shrinks only
slightly. This can be seen from Fig. 4 in
which

location of maximum upslope wind at 2hr,

the vertical wind profile at the

4hr and 7hr are shown. It is also clear that
above the layer of upslope winds there is a



layer of returning flow which is deeper in
thickness but weak in intensity. Fig. 5 shows
the time-height cross section of the shifts of
the fixed
location two grids from the mountain peak.
The lines

direction and the numbers, the maximum and

horizontal wind direction above

indicate where the wind changes
minimum horizontal velocities in the vertical.
The time variation of the thickness or up-
slope wind and returning flow are evident in
the figure. Above the returning flow there

exist still more oscillatory layers whose
intensities are vanishingly weak though. The
thickness of the upslope wind and the highest
velocity agree very well with the observations
cited in the introduction.

When the air near the sloping ground is
heated and the thermal cirulation develops,
heat energy is conducted upward by the
circulation as well as subgrid diffusion. Conse~
quently, potential temperature increases mono-
tonically with time in the layer below 1500
m and gradually approaches a slight super-
adiabatic profile. This is clearly depicted in
Fig. 6 where the potential temperature devia-
tions above the valley and the mountain peak
are plotted against the height. According to
(10)—(11), the

upward transport of heat results in potential

the energy equations, Egs.
energy reduction, part of which is transfrmed
into kinetic energy. Fig. 7 shows the time
variation of calculated values of the terms in
Eq. (11). Because of the over-all large static
stability chosen in the model, the two biggest
terms in the eqation are G and Br. The resul-
tant Gi~ Br shown in the figure is positive
only in the first  hour, quickly becoming
negetive and dominant. The horizontal compo-
nent, Bg, of potential energy flux from the
slope is the primary source of potential energy
of the sys'tem. It supplies the energy being
transformed into kinetic energy through the

sinking of cooler air and rising of warming

air. The vertical component of lower boundary
flux is negative as long as the surface strati-
fication remains stable. The total flux of
potential energy from the ground, however, is
of computation. The
Ba+Be—Br—G
evidently indicate that the decrease of potential

positive till the end
curves of B and resultant
energy is due to the energy transformation C
in the early half of computation but is domi-
nated by the subgrid diffusion in the later
balf.

In order to give a better view of the
structure of the upslope wind system, the stre-
amline pattern, the horizontal and vertical
velocities and the thermal structure at the
time of maximum upslope wind are shown in
Figs. 8—11 respectively. The thermal slope-
circulation in a stable atmosphere is indeed a
shallow phenomenon. The upslope windis even
much more concentrated than the returning
low. Its thichness varies only slightly but the
velocity changes considerably along the slope.
The highest speed is not located nearly half
way on the slope but close to the mountain
peak. The major portion of the upslope wind
and the returning flow are parallel to the
sloping ground. The upward motion is concent-
rated close to the ground and near the mountain
peak, while the downward flow spreads atop
over a much larger domain. Accordingly, the
layer of unstable of unstable stratification is
expanded considerably near the mountain peak
but limited to a very shallow layer elswhere
on the slope. The packing ef isentropes due to
the to the downward motion of the retdrning
flow (see Fig. 11) is only very slight, unlike
the unrealistic packing in Orville’s result
which was attfibuted by him to the assumption
of a constant eddy coefficient.

3.2. Downslope winds.

The initial condions given in 2.6 also app-

roximates the state of atmosphere at about

two hours after sunset. Numerical integration



of the model equations has been carried out
for slightly over five hours of physical time,
For 2

second term on the

starting from the initial conditions,
equal to a half day the
right hand side of Eq. (9) simulates radiational
céoling along the sloping ground. Because of
the cooling, downslope motions are set up near
the ground and a layer of returning flow
appears atop as required by mass continuity.
Some of the results are shown in Figs. 12—15,
Evidently, the intensity of the downslope wind
is much weaker than the upslope wind in the
above mentioned case, and the thickness of the
downslope wind and the returning flow are
much shallower. Unlike the upslope-wind case,
the downslope wind, as well as the returning

flow, reaches its maximum intensity in less
than two hours,

the end of
can be accounted for by the fact that the ground

than decreases steadily till

integration. These characteristics

cooling greatly enhances the stable stratification
of the stmosphere below 1.5 km, particularly,
the surface layer (see Fig. 15).

4, Summary and concluding remarks.

The set of the equations of shallow water
convection has been applied to the investigation
of the evolution of thermally induced circul-
ation above a V-shaped mountain-valley profile
in a stable atmosphere. For simplicity, the
motion is assumed to be uniform in the direc-

tion of valley axis and about

symmeric
the vertical plane passing through the axis
of the valley as well as the mountain. The
heating of codling of the sloping ground is
simulated by prescribing the diurnal variation
of ground temperature. The major results of
numerical integration of the equations may be
summerized as follows:

a) The peak intensity of the thermally
induced circulation in daytime leads the maxi-
mum surface temperature nearly two hours.

b) The highest upslope velocity occurs
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over the upper half of the slope at a distance
of about fifty meters from the ground.

¢) The thickness of the upslope wind is
about 100 to 200 meters, changing accordingly
with the intensity of the slope wind.

- d> The returning flow is much weaker but
of greater thickness than the slope wind.

e) The maximum vertical velocity is located
above the mountain top.

f) In the first stage of the development of
the upslope wind the potential enegy of the
system increases because of subscale diffusion.
After the upslope wind is fully developped, the
potential energy decreases mainly due to
subscale diffusion, only a small portion of it
is transformed into kinstic energy.

g) The nighttime downslope wind is much
weaker and shallower than the daytime upslope
wind but attains its maximum intensity much
faster. For the slope inclination of 1 to 5, the
highest velocity is about 3 m/s for daytime
upslope wind but less than 1 m/s for nighttime
downslope winds. »

“Although the calculated

good agreement with observations, the model

results are in
suffers from one major inadequacy, viz., atmo~
spheric radiation- effects, particularly during
the night, is not taken into consideration in
the model. Unless this shortcoming is corrected,
it is not proper to carry out longer numerical
integrations such as to investigate the diurnal
cycle of thermally induced slope circulations.
Other simplifications such as the motion being
uniform in the direction of the valley axis and
symmetric about the vertical plane passing
through the axis of the valley as well as the
mountain, should also be removed in order the

results to be more realiestic.
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Fig. 8. Streamlines at t = 4 1/4 hr.
4 1/4 RS2 ok

— 39 —



— 40 —

2.5 km
0
-
2'0“ ©
”*=

1.54

2.0

0.5 -

Fig. 9 Distrioution of horizontal velocity at t

4 1/4 ESEEK ISR E 5 e

4 1/4 hr.




— 41 —

2.5 km

’o — 1 \ 1 ‘ 1

Fig. 10. Distribution of vertical vbelocbity' at t = 4 1/4 hr.

4 1/4 PSR EERES HE



2.0 . &.0

Fig. 11. Distrioution of 6”7 at t = ,4:_1/4.1:_:.
4 1/4 MESEEO I

~~~~top of the layer of super-adiabatic lapse rate.

<



up{m/s)
1-0
-] \
¢ A A A L e
° 3 4 3 3 5 ny

Fig. 12. Change of Um.x with time.
U B A fiEbEis S8 L R

0.5 «m

. L
A [} A d a

0.5 l.0 1,5 2.0 2:5 km

Fig. 13. Trajectory of the streamline center.

WA 2 BABKIE



h jxm)
1o ] -
~= e e
k
0.5 -
® ]
31 .33 .31 .29 29 -36 22 19 A3 w5
e 7% ™ - v . o
. . 69 .64 .59 .53 .45 38 o
Q ? @ ® ® @ "] o gMA
0 T T ' T 1 T
1 2 3 . & 3 5 nr

i“ig. 14. Variation of layered structure of wind.

JRZ B St RS RS R (LI

where change of wind direction takes place,
() location and magnitude of maximum wind in the layer

2 (km)
.o
A: initial ?
8: 2.5 hy
C: 3 /4 by s
&5
0: 81/8 hr
a4
€:5 1/4 hr 3
F: 6 hr
1.0,
.5
& 0

48 -2 7 o 1 2 3 4 e
Fig' 15. Time variations of 6/ profile over (a) the valley and (b) the ridge.
HEBRHF ) o I E 2 R LE



