# 結合 TMI 微波資料及 MTSAT 紅外線資料 反演海上颱風降水

# 胡仁基<sup>1</sup> 陳萬金<sup>2</sup> 汪建良<sup>2</sup> 劉振榮<sup>3</sup>

<sup>1</sup>國防大學理工學院國防科學研究所 <sup>2</sup>國防大學理工學院環境資訊及工程學系 <sup>3</sup>國立中央大學太空暨遙測中心

(中華民國九十七年三月三十日收稿;中華民國九十七年十二月七日定稿)

## 摘 要

本研究之目的是結合微波資料可穿透雲的特性以及紅外線資料高時間解析度的優點,建立準即時 估算颱風降雨的技術。目前使用 1998~2004 年 Tropical Rainfall Measuring Mission (TRMM) 衛星上的 TRMM Microwave Imager (TMI) 微波資料及日本宮古島附近十一個島嶼測站之地面觀測降雨量,以統 計法建立多頻道線性迴歸方程式,估算海上颱風定量降水。本研究首先以 TRMM 衛星上的 Visible Infrared Scanner (VIRS) 11µm 高解析度紅外線頻道資料,求出颱風降雨冷雲覆蓋面積率(fractional coverage; FC);然後,使用紅外線降雨估算遙測技術 (GOES Precipitation Index; GPI),以 TMI 微波資料 所反演的颱風降雨率當作降水真値,並與同時間及地點的紅外線資料建立線性迴歸關係式;最後,採 用最佳相關係數所對應的紅外線亮度溫度作為降雨閾値 (threshold),並使用地球同步衛星紅外線資料 (MTSAT-IR) 估算海上颱風降雨率。

本文針對 2005 年瑪莎 (MATSA)、卡努 (KHANUN)、2007 年柯羅莎 (KROSA) 颱風、聖帕 (SEPAT) 及 2008 年薔蜜 (JANGMI)、利用微波降雨率求得紅外線降雨閾値在三種不同解析度(1°×1°,0.5°×0.5°, 0.25°×0.25°) 下變化的情形。結果顯示,結合微波及紅外線資料所發展的 GPI 技術在 1°×1°解析度下表現最好,並對判斷颱風降雨強弱持續性變化的趨勢有良好的成果。同時,相對於全球紅外線固定之降雨閾値 235 K,本研究之動態降雨閾値較能掌握住颱風降雨強度之變化。由此顯示,本研究不僅可結合微波及紅外線資料的優點,亦可有效提升監測颱風強度變化之能力。

關鍵詞:微波頻道、降雨率、颱風、TMI、GPI、MTSAT-1R。

### 一、前 言

近二十年來,利用衛星資料反演全球降雨的 技術非常多,其中以衛星微波資料反演的結果較 以紅外線及可見光頻道間接估算的結果為準確, 因爲微波頻道具透雲性,可直接量測雲下降雨的 情形,而紅外線資料容易受卷雲的影響,所得到 的結果往往高估了實際降雨量,這是因為可見光 與紅外線只能提供雲表面的資訊,對於雲下的降 雨情形卻毫無所知。另外,可見光雲圖雖可避免 卷雲之影響,但白天才有資料,並且觀測到的是 雲的反照率,而不是實際的降雨資訊,故均屬於 間接性的降水估計(曾,1988)。微波遙測降雨技 術目前受限於時間解析度不足,無法長時間持續 對某地區進行觀測。另一方面地球同步衛星紅外 線頻道雖不能透雲,但卻有相當高時間解析度, 因此結合兩者的優點發展出一套準即時降雨估算 系統,可針對海上颱風其生成、發展及消散等生 命過程中,連續地估算其降雨率的變化。如今, 台灣地區每年 7~10 月期間常受到颱風環流的影 響而產生大量降水,造成重大的災害與傷亡,例 如 2004 年 8 月艾利 (AERE) 颱風和 2007 年 10 月柯羅莎 (KROSA) 颱風,均造成台灣北部地區 嚴重之水災及土石流。為了避免這些災害再度發 生,我們必須針對颱風降水估算技術有更進一步 的瞭解,進而精進降水預報之研究,以降低豪大 雨所造成的損失。

在微波降雨技術方面,一般為建立衛星微波 亮度溫度(brightness temperature; Tb)與測站降雨 率 (rainfall rate; RR)之關係式 (Liu et al., 2001; Chen and Li, 2002; Kidd et al., 2003)。另外,也有 利用海上繫留系統 (Buoy)上的雨量計,以 2~ 10 小時累積降雨量對應 1°×1°網格點上的微波資 料建立兩者之關係,而其相關係數大約為 0.6~ 0.7 (Bowman, 2005)。陳等人 (2006)利用高解析 度的 TMI 微波資料將颱風降雨區分為放射型機 制與散射型機制兩個部分,針對不同的機制分別 建立多頻道反演方程式。由於颱風降雨型態多為 對流雨帶雲系,且在凝結層以上具有大量冰晶粒 子,故在散射機制下其統計迴歸方程式相關係數 較高(約0.85);反之,在放射機制下其主要能量 來自於雨滴放射的貢獻,但因受限於頻道飽和效 應,故對於強降雨發生時其相關係數較低(約 0.5),其他關於細部微波降雨技術的作法,可參 考該文中詳細的說明。

在紅外線遙測技術方面, Arkin and Meisner (1987) 以 GPI (GOES Precipitation Index) 法估算 降雨,其在 30°N~30°S 區域內降雨闌值 (threshold) 定為 235 K, 空間解析度為 2.5°×2.5°時, 其方程 式定為 GPI (mm) = 3 (mm/h) × FC × t (h); 其中 FC (fractional coverage)是冷雲頂覆蓋面積率(即 亮度溫度<235 K 所涵蓋面積的比率),其値介於 0~1 之間;t 是時間間距;GPI 是這時距內的累 積降雨量。Kummerow and Giglio (1995)結合 GMS-5 衛星的紅外輻射資料與 DMSP 衛星 SSM/I 的微波輻射資料,並以澳洲 Darwin 相對 應的雨量計與雷達資料進行比較。該文中使用動 態閾値 (dynamic threshold) 計算 GPI 的變化, 結果發現以紅外輻射亮度溫度 235 K 當降雨閾値 似乎太高,因此便將所有的最佳閾値取平均得到 210 K 的新閾值, 此閾值對 Darwin 的降雨有較 好的相關性。由此可見最佳降雨閾値會隨著地域 的不同與空間尺度大小的不同而有所改變。 Huffman et al. (2001) 也曾利用 GPI 方法分析 1°×1°空間尺度紅外線資料,並建立全球日降雨 量的分布。

在結合微波與紅外線遙測技術方面,雖然紅 外線與降雨關係非直接性,但其時間及空間解析 度皆較微波資料爲佳,所以結合微波及紅外線資 料個別優點的策略,在衛星降雨反演應用上可獲 得最大的效果,這也是目前國際上發展的趨勢, 國際間有許多著作應用微波降雨估算的準確性進 而校正紅外線降雨闌値 (Xu et al., 1999; Adler et al., 2000, Todd et al., 2001, Ba and Gruber, 2001; Kuligowski, 2002; Joyce et al., 2004; Feidas et al., 2006) 可獲得高時間解析度的降雨結果。Todd et al. (2001) 特別指出在全球熱帶及副熱帶地區紅 外線最佳降雨閾值與估算紅外線降雨強度彼此的 關係具有高度的變動性,充分反應出其間雲物理 過程顯著的複雜性,這也足以說明現階段紅外線 遙測技術的困難度。同時,目前在應用上有一個 正在作業的產品 (TRMM 3B42RT), 是結合多顆 微波資料與紅外線資料的產物,以多顆衛星微波 資料 (TMI, SSM/I) 校正全球多顆同步衛星 (MTSAT-1R、GOES、EUMETSAT)紅外資料,但 TRMM 3B42RT 資料的時間解析度為 3 小時一 筆,每一天共計 8 筆資料,空間解析度為 25 km ×25 km,由於現階段該資料無法快速獲得,需要 經過 14 至 18 小時才可藉由網路下載使用,雖 然 TRMM 3B42RT 空間解析度不錯,可是在時間 解析度上無法應用於即時觀測海上颱風強度的變 化。然而我們現在使用 MTSAT 紅外線資料每隔 30 分鐘就有一筆,當獲得微波資料後即可校正紅 外線降雨閾値,獲得海上颱風降雨分佈情形。如 今,本研究在海上缺乏完整降雨實測資料的情況 下,利用 TMI 微波輻射資料以統計法反演降雨 率(以下用 TMI\_RR 表示)的技術,彈性調整 GPI 方程式中的斜率 (GPI\_Adjust) 及適合本研 究區域於颱風期間使用的最佳降雨閾値。因此,

結合 TMI\_RR 的資料以 GPI\_Adjust 方法對海 上颱風強度的變化做持續性的降雨觀測。

本文整個架構包含第二段說明資料處理的過程,第三段為敘述研究方法的步驟,第四段為反 演結果個案分析,第五段為結論。

# 二、資料與處理

本研究所使用的衛星資料包括 TRMM / TMI、TRMM / VIRS 及 MTSAT-1R 三種衛星資料,另外還有島嶼地面觀測資料。下面簡單介紹 各裝備之特性。

#### (一) TRMM/TMI 微波資料

TRMM 衛星是由美、日合作於 1997 年 11 月 27日發射,其任務為對地球南北緯 40 度間的熱 帶區域作降雨觀測。觀測資料可應用在研究異常 氣候的原因(例如:聖嬰現象),以及改進全球環 境變遷模式的降雨物理機制,並瞭解熱帶降雨系 統動力與熱力變化的過程。該衛星原本預計進行 爲期三年的熱帶地區降雨觀測,但因研究需要在 2001 年 8 月之後為延長其任務壽命,衛星高度已 由原本 350 km 提高到 402 km,以 35 度傾角、周 期約 92 分鐘繞地球運轉。其所搭載的 TMI 屬被 動式微波輻射儀正是用來觀測熱帶地區降雨分佈 的最佳工具。TMI 資料為 Level-1B11 (Version 6) 資料,經由美國 TRMM Data Access 網頁中 (http://disc.sci.gsfc.nasa.gov) 下載,該資料已經過 輻射校正與幾何定位處理,其內容包括衛星掃描 起迄時間、掃描總時間及軌道編號以及每個像元 (pixel) 之經緯度、地表識別碼(含陸地、海洋、 海岸)、九個微波頻道亮度溫度。由於資料解析度 依不同頻道有所不同,但經重新取樣 (resampling) 將九個頻道亮溫內插至同一個網格點上,每個頻

道解析度為 10 km,其九個微波頻道分別為 10.65V(V 表示為垂直極化亮度溫度)、10.65H (H表示為水平極化亮度溫度)、19.4V、19.4H、 21.3V、37V、37H、85.5V、85.5H GHz。

#### (二) TRMM/VIRS 紅外線影像資料

TRMM 衛星的觀測資料中,VIRS 共有 5 個 頻道,兩個可見光(visible)及 3 個紅外線(infrared) 頻道,本研究採用第 4 頻道其波長為 11 µm 之紅 外輻射亮度溫度資料,進行分辨在 TMI 視場內降 雨分佈不均匀(Kummerow et al., 1998)的研究。由 於可見光頻道受限於白天才能使用,本研究僅以 紅外線資料第 4 頻道(11 µm)及第 5 頻道(12 µm) 之差値濾除卷雲的方法敘述如後。VIRS 是 VIRS Level-1B01 IRTb11 輻射資料,解析度約為 2.2 km,其掃描帶(swath)為 720 km,具有與 TMI 同 時間觀測的優點,故可作為檢驗 TMI 資料品質 的參考依據及估算 GPI 降雨率的分佈。

#### (三) MTSAT-1R 紅外線影像資料

Multi-functional Transport Satellite-1R (MTSAT-1R) 全名為多用途運輸衛星,日本於 2005 年三月發射 升空,位於 140°E 赤道上空,取代原先 GMS-5 地球同步衛星,其資料已於 2005 年 7 月開始使 用,頻道區分為 5 個頻道分別為 VIS (0.55~0.9 µm)、IR1 (10.3~11.3 µm)、IR2 (11.5~12.5 µm)、IR3 (6.5~7.0 µm)、IR4 (3.5~4.0 µm),資料空間解析度 可見光為 1.25 km、紅外線為 5 km。MTSAT-1R 資料是由中央氣象局接收提供,每隔 30 分鐘接 收一次,依紅外線頻道之亮度溫度與輻射強度對 照表解出 IR1、IR2 頻道紅外線亮度溫度。由於 資料時間解析度高,故本研究將 GPI 方法應用 於地球同步衛星,該資料 IR1、IR2 與 TRMM / VIRS 第 4 及第 5 頻道相同,可以濾除卷雲。

#### (四) 島嶼測站雨量資料

本研究之降雨資料來自日本氣象廳 (Japan Meteorological Agency; JMA),由於海面上降雨觀 測不易獲得,研究中假設島嶼地面降雨率能夠代 表其周邊海上平均降雨率。所使用的資料為 1998~2004 年期間,每年 7~10 月颱風盛行期間日 本南方附近海域 IBARU (測站編號 93011)附近 11 個島嶼測站(表一)所提供每 10 分鐘一筆地 面觀測資料,整個內容包括風向、風速、溫度、 濕度、雨量、日照量、雪量等 7 項。本研究利用 島嶼測站雨量資料累積一個小時作為地面降雨資 料之標準値,同時與衛星獲得之輻射能量(亮度 溫度),彼此建立 RR-Tbs 之多頻道線性統計迴歸 方程式。另外,藉由島嶼測站每小時降雨資料驗 證微波估算颱風定量降雨率的情形。

## 三、研究方法

本研究主要利用微波頻道建立反演海上颱風 降雨率的方法,結合紅外線降雨遙測技術,以冷 雲雲頂亮度溫度所覆蓋的面積與微波所反演之降 雨率建立一線性方程式,進而應用至高時間解析 度的地球同步衛星上的紅外線資料,即可持續觀 測海上颱風在降雨率上的變化情形。圖 1 爲研究 方法之流程圖,研究方法區分爲兩個步驟,分述 如下:

(一)首先以陳等人(2006)所建立反演海上颱風定 量降雨率的方法,依多頻道微波輻射亮度溫 度對降雨變化的特徵,降雨型態可區分為因 雨滴本身放射率與海面放射率之差異,使得 雨滴吸收與放射效應造成微波輻射量改變之 放射機制型降雨,另因雲層冰晶散射效應導 致高頻亮度溫度降低的散射機制型降雨

| No. | 測站名稱                | 編號    | 位置(經緯度)           | 高度(m) |
|-----|---------------------|-------|-------------------|-------|
| 1.  | 伊良部 (IRABU)         | 93011 | 24.82°N, 125.17°E | 10    |
| 2.  | 宮古島 (MIYAKOJIMA)    | 93041 | 24.79°N, 125.27°E | 40    |
| 3.  | 城邊 (GUSUKUBE)       | 93051 | 24.74°N, 125.41°E | 55    |
| 4.  | 多良間 (TARAMA)        | 93061 | 24.66°N, 124.69°E | 16    |
| 5.  | 伊原間 (IBARUMA)       | 94001 | 24.50°N, 124.28°E | 15    |
| 6.  | 川平 (KABIRA)         | 94036 | 24.46°N, 124.14°E | 7     |
| 7.  | 與那國島 (YONAGUNIJIMA) | 94017 | 24.46°N, 123.01°E | 30    |
| 8.  | 西表島 (IRIOMOTEJIMA)  | 94061 | 24.38°N, 123.74°E | 9     |
| 9.  | 石垣島 (ISHIGAKIJIMA)  | 94081 | 24.33°N, 124.16°E | 6     |
| 10. | 大原 (OOHARA)         | 94101 | 24.26°N, 123.87°E | 28    |
| 11. | 波照間 (HATERUMA)      | 94116 | 24.05°N, 123.76°E | 38    |

表一 本研究所使用島嶼測站之名稱、編號、位置及高度



圖 1 結合 TRMM / TMI 微波資料與 TRMM/VIRS 11 μm 紅外線資料建立 GPI\_Adjust 方程式,並應用於 MTSAT-1R 11μm 紅外線資料的流程圖,(分 別建立三種網格 1°×1°, 0.5°×0.5°, 0.25°×0.25°之方程式)。

(Wilheit et al., 1991)。在降雨辨識方面,結合 Chen and Li (2002)所提出閾值辨識法 (Threshold Check; TC)以及 Ferraro et al. (1994)的散射指數法(Scattering Index; SI),產 生一個對降雨組合辨識法(Combination Check; CC), 經由 TC 法所得到 TMI 頻道 中 Tb10V、Tb10H、Tb19V、Tb19H, Tb21V、 Tb37V、Tb37H、Tb85.5V、Tb85.5H 平均亮 度溫度為降雨閾值,這些降雨閾值分別為 174.83 · 91.54 · 213.77 · 153.46 · 241.54 · 224.45、167.21、274.56、253.61 (K)。之後 再將判斷為降雨的像元,以散射指數 (SI>10) 篩選出真正符合降雨條件的像元。另外,針 對降雨型態的分辨,則以Tb85.5V及Tb85.5H 分別為 274.56 K、253.61 K 當作散射型降雨 閾值,當 Tb85.5V 及 Tb85.5H 同時低於以上 兩闌値時為散射機制型降雨型態,反之則為 放射機制型降雨型態。本研究引用陳等人 (2006)蒐集 1998~2003 年 14 個颱風其衛星 資料與地面測站降雨量之匹配資料,分別建 立散射及放射之多頻道線性迴歸方程式:

$$RR_{s} = 152.65 - 0.77TB_{10V} + 0.47TB_{10H} - 0.147TB_{19V} + 0.537TB_{19H} - 0.508TB_{21V} + 0.818TB_{37V} - 0.773TB_{37H} - 0.91TB_{85V} + 0.803TB_{85H}$$

(1)

$$RR_{E} = -44.28 - 0.107TB_{10V} + 0.06TB_{10H} + 0.7TB_{19V}$$
$$- 0.15TB_{19H} - 0.308TB_{21V} + 0.148TB_{37V}$$
$$- 0.15TB_{37H} - 0.17TB_{85V} + 0.18TB_{85H}$$

(2)

以上方程式中,RRs 為散射機制型降雨率,RR<sub>E</sub> 為放射機制型降雨率。反演的結果經由 2004 年 5 個颱風個案與其所對應之島 嶼觀測資料驗證後,總結其成果為衛星反演

之降雨率與地面雨量筒觀測之降雨率的相關 係數為 0.74,反演降雨率平均值為 5.6 mm/hr,均方根誤差為 3.75 mm/hr,在總數 66 筆資料中雖然均方根誤差已經超過平均 降雨量的一半,但若將整個降雨三個區段 0.2~5, 5~10, 10~22 mm/hr, 平均值及均方根 誤差分別為(2.45, 2.3), (7.2, 3.48), (16.4, 8.1),可見在弱降水時,反演的結果誤差很 明顯,但在 5 mm/hr 以上則還算不錯。整體 而言,由於利用微波多頻道線性迴歸方程式 所反演的降雨率與地面觀測降雨率相關係數 還不錯,所以我們將經由驗證後的微波降雨 反演值當作地面降雨的真值,反推紅外線資 料之最佳降雨閾值。本研究使用 Arkin (1979) 及 Arkin and Meisner (1987)的 GPI 法, 在本 研究區域中 (10°~30°N, 110°~140°E) 為考 量不同空間解析度對平均降雨率變化的問 題,特意設定三種不同大小的網格 (1°×1°. 0.5°×0.5°, 0.25°×0.25°)。此外,考慮陸地效 應會影響微波降雨估算的結果,因此去除網 格點中的島嶼及陸地面積。接著利用與 TMI 相同觀測時間的 VIRS\_IR Tb11 紅外線資料, 在亮度溫度 190~250 K 之間以每 1 K 為一 個間距,分別在這三種網格中計算每個亮度 溫度值以下範圍內的 FC (例如:亮度溫度 在 200 K 以下的冷雲覆蓋面積/網格所佔 而積,就是該亮度溫度的冷雲覆蓋而積率)。 由於卷雲溫度低但卻不下雨,因此會影響降 雨冷雲面積的估算,所以必須將之去除。 Inoue (1987)利用波長 11 µm 紅外線雲頂亮 度溫度 (Tb<sub>11</sub>) 與 12 μm 紅外線雲頂亮度溫 度 (Tb<sub>12</sub>) 的差值 (Tb<sub>11-12</sub>) 作為濾除卷雲的 方法,若Tb<sub>11-12</sub> > 2.5 K 則判定為受卷雲影

響;另外,Kurino (1997) 認為 Tb<sub>11-12</sub> > 3.0 K 且 Tb<sub>11</sub> < 218 K 的區域,其降雨的機率很低 (約 30%)。基於這個概念,我們以統計法 將 TRMM/VIRS 的 Tb<sub>11-12</sub> 與微波所反演海 上降雨率為 0 mm/hr 的區域進行分析,結果 顯示 Tb<sub>11-12</sub> > 4.5 K 且 Tb<sub>11</sub> < 218 K 則該 區域判定為受卷雲影響。

(二) 當判定為受卷雲影響的像元濾除後,以最小 平方線性迴歸法,將海上三種不同網格內的 FC 與微波估算之平均降雨率 (TMI RR), 計算得到兩者最佳相關性(最大 R 值)的紅 外線降雨闌值,與經微波降雨強度調整過之 GPI 線性方程式(GPI Adjust),但若最佳相 關係數所對應的紅外線降雨閾值超過全球紅 外線降雨闌値 235 K,則以 235 K 作為該筆 資料之降雨閾値。當 GPI Adjust 線性方程 式建立後,我們可以將此技術應用於高時間 解析度衛星資料上(例如:MTSAT-1R),同 樣地分別設定三種不同解析度的網格,求出 每個小時或半個小時內整個研究區域三種不 同解析度網格內 GPI Adjust 降雨值的分 佈。同時,我們將研究區域中以颱風中心向 外延伸 5 個經緯度 (500 公里), 統計此固 定範圍內 GPI Adjust 的總和,經由每一個 時間其 GPI Adjust 總和的變化,可對海上 颱風降雨率變化成爲一個間接性的觀測指 標。

# 四、反演結果分析

本研究針對 2005 年瑪莎(MATSA)、卡努 (KHANUN)、2007 年柯羅莎(KROSA)颱風、聖帕 (SEPAT)及 2008 年薔蜜(JANGMI)以統計法估算 海上定量降雨,另結合 TRMM/VIRS 紅外線資料 建立 GPI Adjust 線性迴歸方程式。表二顯示這 5 個颱風分別在三種不同大小網格點上的 GPI Adjust 方程式、相關係數、所對應的紅外線 降雨閾値及所使用的樣本數(samples)。在相關係 數方面,似乎每一個颱風在 1°×1° 網格中,絕 大部分其相關係數最高,也就是說在 1°×1°網 格中,其 TMI RR 與 FC 有比較高的相關性, 並且代表 FC 可以應用在估算海上颱風 GPI\_Adjust 的降雨率。以 2005 年瑪莎颱風為 例,其衛星觀測共有 6 個時間,分別對這 6 個 時間建立三種不同大小網格的 GPI Adjust 線性 方程式,其最大的相關性在 1°× 1°約為 0.51~0.75, 而 0.5°× 0.5°約為 0.29~0.67, 另 0.25°×0.25°約為 0.23~0.53。同理,2005年卡努 颱風有四次觀測時間,在 1°×1°相關性介於 0.71~0.86,在 0.5°×0.5°約為 0.59~0.84,另 0.25° × 0.25° 約為 0.42~0.68, 另 2007 年柯羅莎颱風 有 3 次觀測時間,在 1°×1° 其相關性也是介於 0.54~0.75 之間,在 0.5°×0.5°約為 0.52~0.63, 另 0.25°× 0.25°約為 0.41~0.52。同時, 2007 年 聖帕颱風也有三次觀測時間,在1°×1°其相關性 也是介於 0.6~0.78 之間,在 0.5° × 0.5° 約為 0.38~0.67,另 0.25°×0.25°約為 0.25~0.53。再 者 2008 年薔蜜強烈颱風在 1°×1° 其相關性也是 介於 0.71~0.88 之間, 在 0.5° × 0.5° 約為 0.63~0.77,另 0.25°× 0.25°約為 0.46~0.64。若 我們以 TMI RR 為橫軸, FC 當作縱軸,分別 取瑪莎 (#43997) 及卡努颱風 (#44546) 各一筆 軌道微波資料 (path) 為例,將三種解析度其 TMI RR 與 FC 兩者分佈的關係繪製成散佈圖 (圖2),由於原本 TMI RR 在橫座標上受到匹配 資料分配不均匀的影響,造成兩者相關性雖高, 但散佈圖顯示的結果似乎不好,尤其在 0.5°×0.5° 表二 瑪莎(MATSA)、卡努(KHANUN)、柯羅莎(KROSA)聖帕(SEPAT)及薔蜜(JANGMI) 颱風建立1°×1°、0.5°×0.5°、0.25°×0.25°三種解析度取樣之GPI方程式、最佳降雨閾 值、相關係數及樣本數。(GPI=GPI\_Adjust)

| Item<br>Name                        | Resolution                      | Linear Regression Equation | Rain<br>Threshold<br>(K) | Correlation<br>Coefficient<br>(R) | Samples |
|-------------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------------------|---------|
| 43956                               | $1^{\circ} \times 1^{\circ}$    | GPI=9.84*FC+0.25           | 205                      | 0.75                              | 58      |
|                                     | $0.5^{\circ} 	imes 0.5^{\circ}$ | GPI=7.11*FC+0.34           | 206                      | 0.54                              | 143     |
| (MAISA)                             | 0.25°×0.25°                     | GPI=6.36*FC+0.41           | 206                      | 0.37                              | 427     |
| 42066                               | $1^{\circ} \times 1^{\circ}$    | GPI=6.22*FC+0.29           | 211                      | 0.51                              | 90      |
| (MATSA)                             | $0.5^\circ 	imes 0.5^\circ$     | GPI=5.15*FC+0.24           | 211                      | 0.36                              | 222     |
| (MAISA)                             | 0.25°×0.25°                     | GPI=4.95*FC+0.13           | 211                      | 0.25                              | 708     |
| 42071                               | $1^{\circ} \times 1^{\circ}$    | GPI=4.8*FC+0.32            | 217                      | 0.71                              | 99      |
| 43971<br>(MATSA)                    | $0.5^\circ 	imes 0.5^\circ$     | GPI=5.34*FC+0.29           | 216                      | 0.6                               | 237     |
| (MAISA)                             | 0.25°×0.25°                     | GPI=4.84*FC+0.33           | 217                      | 0.5                               | 698     |
| 42082                               | $1^{\circ} \times 1^{\circ}$    | GPI=5.61*FC+0.07           | 217                      | 0.64                              | 43      |
| 43962<br>(MATSA)                    | $0.5^{\circ} 	imes 0.5^{\circ}$ | GPI=4.36*FC+0.01           | 215                      | 0.29                              | 89      |
| (MAISA)                             | 0.25°×0.25°                     | GPI=3.98*FC+0.04           | 216                      | 0.23                              | 269     |
| 42096                               | $1^{\circ} \times 1^{\circ}$    | GPI=7.57*FC+0.37           | 211                      | 0.75                              | 111     |
| 43960<br>(MATSA)                    | $0.5^\circ 	imes 0.5^\circ$     | GPI=6.62*FC+0.59           | 213                      | 0.59                              | 243     |
| (MAISA)                             | 0.25°×0.25°                     | GPI=6.1*FC+0.72            | 213                      | 0.46                              | 777     |
| 42007                               | $1^{\circ} \times 1^{\circ}$    | GPI=12.46*FC+0.04          | 210                      | 0.75                              | 41      |
| 43997<br>(MATSA)                    | $0.5^\circ 	imes 0.5^\circ$     | GPI=9.32*FC+0.04           | 208                      | 0.67                              | 52      |
| (MAISA)                             | 0.25°×0.25°                     | GPI=9.07*FC+0.07           | 208                      | 0.53                              | 156     |
| 11516                               | $1^{\circ} \times 1^{\circ}$    | GPI=4.67*FC+0.11           | 213                      | 0.8                               | 81      |
|                                     | $0.5^{\circ} 	imes 0.5^{\circ}$ | GPI=7.89*FC+0.31           | 209                      | 0.67                              | 151     |
| (KRANUN)                            | 0.25°×0.25°                     | GPI=7.7*FC+0.31            | 210                      | 0.6                               | 404     |
| 44551                               | $1^{\circ} \times 1^{\circ}$    | GPI=7.96*FC+0.15           | 206                      | 0.86                              | 75      |
| $\frac{44331}{(K \Pi A N \Pi N I)}$ | $0.5^{\circ} 	imes 0.5^{\circ}$ | GPI=10.9*FC+0.17           | 202                      | 0.84                              | 146     |
|                                     | 0.25°×0.25°                     | GPI=11.1*FC+0.17           | 211                      | 0.68                              | 341     |
| 445.00                              | $1^{\circ} \times 1^{\circ}$    | GPI=4.72*FC+0.02           | 222                      | 0.81                              | 53      |
| 44562                               | $0.5^{\circ} 	imes 0.5^{\circ}$ | GPI=3.71*FC+0.02           | 227                      | 0.59                              | 96      |
|                                     | 0.25°×0.25°                     | GPI=3.36*FC+0.05           | 227                      | 0.47                              | 279     |

| 11566     | $1^{\circ} \times 1^{\circ}$     | GPI=5.12*FC+0.04 | 222 | 0.71 | 54  |
|-----------|----------------------------------|------------------|-----|------|-----|
| (KHANIIN) | $0.5^{\circ} 	imes 0.5^{\circ}$  | GPI=6.53*FC+0.24 | 226 | 0.59 | 102 |
|           | 0.25°×0.25°                      | GPI=6.29*FC+0.28 | 227 | 0.42 | 269 |
| 56200     | $1^{\circ} \times 1^{\circ}$     | GPI=8.8*FC+0.42  | 207 | 0.75 | 77  |
| (VDOSA)   | $0.5^{\circ} \times 0.5^{\circ}$ | GPI=7.12*FC+0.66 | 208 | 0.63 | 176 |
| (KROSA)   | 0.25°×0.25°                      | GPI=6.38*FC+0.89 | 209 | 0.52 | 581 |
| 56204     | $1^{\circ} \times 1^{\circ}$     | GPI=4.8*FC+0.43  | 215 | 0.54 | 87  |
|           | $0.5^{\circ} \times 0.5^{\circ}$ | GPI=3.48*FC+0.22 | 224 | 0.52 | 228 |
| (KKOSA)   | 0.25°×0.25°                      | GPI=3.25*FC+0.39 | 222 | 0.42 | 722 |
| 5(220     | $1^{\circ} \times 1^{\circ}$     | GPI=8.45*FC+0.45 | 210 | 0.64 | 87  |
|           | $0.5^{\circ} \times 0.5^{\circ}$ | GPI=6.6*FC+0.14  | 224 | 0.57 | 197 |
| (KKUSA)   | 0.25°×0.25°                      | GPI=6.31*FC+0.22 | 224 | 0.41 | 635 |
| 55526     | $1^{\circ} \times 1^{\circ}$     | GPI=8.6*FC+0.14  | 204 | 0.78 | 76  |
| (SEDAT)   | $0.5^{\circ} 	imes 0.5^{\circ}$  | GPI=7.1*FC+0.18  | 204 | 0.67 | 140 |
| (SEFAI)   | 0.25°×0.25°                      | GPI=6.9*FC+0.25  | 203 | 0.53 | 390 |
| 55541     | $1^{\circ} \times 1^{\circ}$     | GPI=6.85*FC+0.46 | 224 | 0.6  | 108 |
| (SEDAT)   | $0.5^{\circ} 	imes 0.5^{\circ}$  | GPI=6.3*FC+0.46  | 216 | 0.55 | 224 |
| (SEFAI)   | 0.25°×0.25°                      | GPI=3.78*FC+0.31 | 211 | 0.5  | 568 |
| 55567     | $1^{\circ} \times 1^{\circ}$     | GPI=5.37*FC+0.01 | 218 | 0.61 | 83  |
| (SEDAT)   | $0.5^{\circ} \times 0.5^{\circ}$ | GPI=3.97*FC+0.08 | 219 | 0.38 | 164 |
| (SEFAI)   | 0.25°×0.25°                      | GPI=3.6*FC+0.14  | 220 | 0.25 | 491 |
| 61901     | $1^{\circ} \times 1^{\circ}$     | GPI=15.6*FC+0.44 | 196 | 0.75 | 85  |
| (IANGMI)  | $0.5^{\circ} 	imes 0.5^{\circ}$  | GPI=18.7*FC+0.7  | 194 | 0.63 | 172 |
|           | 0.25°×0.25°                      | GPI=12.7*FC+0.83 | 195 | 0.46 | 504 |
| 61006     | $1^{\circ} \times 1^{\circ}$     | GPI=6.61*FC+0.27 | 204 | 0.71 | 82  |
| (IANGMI)  | $0.5^{\circ} 	imes 0.5^{\circ}$  | GPI=6.65*FC+0.42 | 203 | 0.63 | 183 |
|           | 0.25°×0.25°                      | GPI=6.23*FC+0.43 | 204 | 0.51 | 571 |
| 61017     | $1^{\circ} \times 1^{\circ}$     | GPI=7.12*FC+0.06 | 216 | 0.76 | 82  |
| (IANGMI)  | $0.5^\circ 	imes 0.5^\circ$      | GPI=4.48*FC-0.02 | 225 | 0.66 | 150 |
|           | 0.25°×0.25°                      | GPI=4.38*FC+0.08 | 223 | 0.54 | 403 |
| 61021     | $1^{\circ} \times 1^{\circ}$     | GPI=8.88*FC+0.09 | 212 | 0.88 | 62  |
| (JANGMI)  | $0.5^{\circ} \times 0.5^{\circ}$ | GPI=9.49*FC+0.19 | 211 | 0.77 | 104 |
|           | 0.25°×0.25°                      | GPI=8.56*FC+0.23 | 212 | 0.64 | 331 |

及 0.25° × 0.25° 尺度下最為明顯。換句話說, 我 們必須重新處理橫座標權重的問題。本文先就橫 座標 TMI RR 的分佈作初步的分析,發現 TMI RR≤ 0.5 mm/hr 的資料數共有 25 筆,其 餘 16 筆則介於 0.6~14.1 mm/hr 之間, 而這 16 筆的分佈比較不理想,也就是說在整個計算相關 係數時,這 16 筆所佔的權重比較小,反之 TMI RR≦ 0.5 mm/hr 的 25 筆資料所佔的權重 就相當大,然而在這 25 筆的關係表現不錯,於 是影響整體相關係數的結果。同理,圖2c及2f 其散佈圖也是這種原因所造成。鑑於這個資料樣 本數分佈不均匀的問題,我們採用 TMI\_RR 在固 定降雨強度區間(interval)內只取一個平均值代 表,如此可解決這個問題,我們取 TMI\_RR= 0.1 mm/hr 當作固定的區間,處理後樣本數由 41 筆 變成 19 筆,進而計算相關係數由 0.75 降為 0.69。同理,圖 2b 處理後樣本數由 52 筆變成 32 筆,相關係數由 0.67 降為 0.54。圖 2c 處理後 樣本數由 156 筆變成 90 筆,相關係數由 0.53 降為 0.49。另圖 2d, 2e, 2f 其散圖分佈經由前述 方式處理後,因卡努颱風匹配資料數較多且密, 其散圖分佈的結果與相關係數均會改變,由圖 2f 可以看出其分佈相較之前有較好的表現。所以當 資料樣本數由 405 筆變成 77 筆後,相關係數則 由 0.6 上升為 0.75。如此,圖 2f 的散佈圖分佈 結果與其相關係數就顯得較為一致。無論如何, 在此我們想強調圖 2a 與 2d 其散圖的相關係數 均比其他尺度要高,所以藉由 100 km × 100 km 尺度中 TMI\_RR 與 FC 的相關性找出最佳紅外線 降雨閾値,進而估算 GPI Adjust 總和作為觀測 海上颱風強度變化的一種指標。同時,表二內所 有TMI\_RR與FC之間的相關係數(R)在三種不同 尺度下,均顯示在1°×1°的尺度中其相關係數是

最高。所以本研究僅針對此網格中估算 GPI Adjust 降雨分佈作分析。

在降雨閾値方面,由於每個颱風其強度會隨 時間而改變,故降雨闌値會隨微波資料在不同時 間及尺度網格中有不同的結果,由瑪莎六個連續 不同的觀測時間分析 1°×1°網格中紅外線降雨 閾值介於 205~217 K 之間,由於颱風雲頂發展的 高度與其生命期有相對應的關係,也就是颱風初 生期雲頂的高度要比成熟期來得高(李等人, 2005),雖然冷雲雲頂的高度會隨著颱風發展過程 中而改變,但經微波估算降雨校正後的紅外線降 雨閾值,在相鄰的時間裡其閾值的變動通常在一 個平均的範圍內。本研究針對 2005~2007 發生於 西太平洋上強烈及中度颱風共計 10 個個案中, 統計分析經微波降雨校正過之紅外線最佳降雨闌 值,發現 66% 個案中相鄰時間所對應的降雨闌 值變動量皆 < 8 K,所以本研究將動態閾值的變 動量範圍設定在 8 K 之內。圖 3 顯示在 1°×1° 網 格點中, TMI RR 與 61 個 FC 建立個別的相關 係數,其中圖 3a 瑪莎颱風(軌道號碼;#43956) 在相關係數分佈上有兩個高點,一個在 198 K, 另一個在 205 K,雖然 198 K 所對應的相關係數 最大,但是與相鄰其他時間的降雨閾値比較下, 並不是最佳的降雨閾值,因此研究中發現並非所 有最大相關係數所對應的降雨閾値就是最佳的降 雨閾値。同理,圖3b卡努(#44566)及圖3c柯 羅莎 (#56330) 颱風亦是有相同的情形發生。

利用 GPI\_Adjust 方法應用在估算海上颱風降 雨強度隨時間變化的情形,也就是說當颱風生成 發展的過程中,計算整個颱風在侵襲陸地之前 GPI\_Adjust 降雨量的總和,藉由微波資料所校正 紅外線降雨閾値,以 GPI\_Adjust 方程式估算,以 颱風中心為中心點向外擴張 500 公里,並用移動



圖 2 分析瑪莎颱風(#43997) TMI\_RR (mm/hr)與紅外線冷雲覆蓋面積率(ratio)在三種不同解析度 (a) 1°×1°, (b) 0.5°×0.5°, (c) 0.25°×0.25°兩者的相關性經固定降雨強度區間 0.1 mm/hr 取樣 後,其值分別為 0.69, 0.54 0.49,另卡努颱風(#44546)其(d), (e), (f)同(a), (b), (c)三種解析度下, 其相關性分別為 0.83, 0.76, 0.75 (Samples 代表經區間取樣後使用的資料筆數)。



(a)







(e)



(d)

計算(a)瑪莎、(b)卡努、(c)柯羅莎、(d)聖 圖 3 帕及(e) 薔蜜颱風其 1° × 1° (100 km×100 km) 解析度下 TMI RR與FC最佳動態閾 值 (dynamic threshold) 與其相關係數分 別列於表二。

視窗(moving window)連續監測整個颱風在 GPI\_Adjust 總和數值上的變化情形。圖 4a 是 2005 年卡努颱風經過四個時間的微波資料校正 後連續 GPI\_Adjust 總和的強度變化,其曲線的 分佈似乎可以看出 GPI\_Adjust 總和隨時間的增 加有持續增強的情形。同時,為要證明 GPI\_Adjust 比全球通用的紅外線降雨閾值 (GPI\_235) 更能



圖 4 (a) 2005 年 9 月 9 日至 9 月 10 日卡努颱風 (KHANUN) 在海上期間 GPI 總和隨時間變 化的情形, GPI\_Adjust 代表局部地區建立之 線性方程式所估算整個颱風 GPI 總和,而 GPI\_235 代表全球固定 GPI 斜率 3 mm/hr 所估算整個颱風 GPI 總和。(b) 2005 年 9 月 5 日至 9 月 13 日颱風中心氣壓隨時間變化的情 形,2005 年 9 月 10 日為颱風強度發展為最強 的時段(取自日本網站 http://agora.ex.nii.ac.jp/ digital-typhoon)。 顯示出颱風在降雨率上的變化,本研究以颱風中 心氣壓隨著時間變化的曲線(圖 4b),自 2005/09/10 0032 ~ 2332 UTC 其颱風中心最低氣 壓值出現 945 hPa,也就是颱風此時強度最強,其 GPI\_Adjust 總和也可以清楚看出颱風強度持續 增強。同時,我們對 2008 年 9 月生成的強烈颱風 薔蜜 (JANGMI) 估算 GPI\_Adjust 總和隨時間變 化的情形,由圖 5a 明顯看出 GPI\_Adjust 總和與 GPI\_235 自 2008/09/26 0030 ~ 2008/09/28 0530 UTC 之間有很大的不同,GPI Adjust 總和是隨時



圖 5 同圖 4,(a) 為 2008 年 9 月 26 日至 2008 年 9 月 28 日 蕃 蜜 颱 風 (JANGMI) 在 海 上 期 間 GPI\_Adjust 與 GPI\_235 總和與 (b) 2008 年 9 月 24 日至 2008 年 10 月 1 日颱風中心氣壓隨 時間變化的情形,2008 年 9 月 27 日為颱風強 度最強的時段(取自日本網站 http://agora.ex. nii.ac.jp/digital-typhoon)。 間持續的增加,當 2008/09/27 1530 ~ 1957 UTC 時 GPI\_Adjust 總和出現最大值;另當 2008/09/27 2030 ~ 2313 UTC 時 GPI\_Adjust 總和則出現持續 減小,此時搭配颱風中心氣壓變化情形(圖 5b) 可見 2008/09/27 1200 UTC 之後出現最低中心氣 壓值 910 hPa,因此,GPI\_Adjust 總和的確可以 成為監測颱風強度變化的一個指標。另外,以 2007 年柯羅莎颱風三個微波資料校正後的 GPI\_Adjust 與 GPI\_235 相互比較,圖 6a 可以看



圖 6 同圖 4,(a) 為 2007 年 10 月 3 日至 2007 年 10 月 5 日柯羅 莎颱風(KROSA)在海上期間 GPI\_Adjust 與 GPI\_235 總和與 (b) 2007 年 10 月 2 日至 2007 年 10 月 14 日颱風中心氣壓隨 時間變化的情形,2007 年 10 月 5 日為颱風強 度最強的時段(取自日本網站 http://agora.ex. nii.ac.jp/digital-typhoon)。

出兩者在 GPI 總和大致相同,但在 2007/10/03 0133~0933 UTC GPI 235 總和的變化較 GPI Adjust 要大,而另在 2007/10/05 0432~1232 UTC 其 GPI Adjust 會隨著時間有快速增加的情 形,然後又隨時間減弱,反之 GPI 235 則看不出 明顯的增強,而圖 6b 則發現這段時間颱風中心最 低氣壓一直維持在 925 hPa, 只有等到 2007/10/06 0100 UTC 才開始持續減弱,由於紅外線偵測雲頂 高度若是在強對流時,雲下的降雨率大部分都符 合冷雲覆蓋的面積率,但有時候強降雨發生時, 冷雲雲頂高度尙未發展到最高,也就是說冷雲雲 頂發展到最高的高度,會與微波估算強降雨率產 生時間上的延遲。這一點與 Rajendran and Nakazawa (2005) 分析 TRMM 3G68 資料時,有 一致的現象。同時,2007 年 8 月聖帕颱風 (2007/08/17 0233 UTC)呈現 GPI 總和變化不連 續的情形(圖 7a),由於這段時間(2007/08/15 0233 ~ 2007/08/17 1833 UTC)僅有三筆微波資料可校 正紅外線降雨閾値,這是因為 TRMM/TMI 衛星 通過時並未掃瞄到颱風降雨的雨帶區域,而 2007/08/15 1033 UTC 至 2007/08/17 0200 UTC 僅 有一筆微波資料可使用,因此當颱風隨時間持續 增強時,紅外線閾値卻無法經後續微波資料校正 而獲得正確降水估算, 直到 2007/08/17 0233 UTC 微波資料出現校正後, GPI Adjust 總和則出現明 顯不連續的變化情形,這也就是為何 2007/08/17 0233 UTC 時 GPI Adjust 總和出現 198 mm 的結 果,圖 7b 顯示颱風中心氣壓最低發生於 2007/08/16 全天, 但圖 7a 中 GPI 總和最大值出現 在 2007/08/17 0233 UTC,故 GPI Adjust 總和似 乎反應颱風強度變化在時間上會有一些延遲,但 整體變化仍然可當作一種颱風強度趨勢參考指 標。再者,我們以2005年瑪莎颱風六個微波資料



圖 7 同圖 4, (a) 為 2007 年 8 月 15 日至 2007 年 8 月 17 日 聖 帕 颱 風 (SEPAT) 在 海 上 期 間 GPI\_Adjust 與 GPI\_235 總和與 (b) 2007 年 8 月 13 日至 2007 年 8 月 23 日颱風中心氣壓隨 時間變化的情形,2007 年 8 月 16 日為颱風強 度最強的時段(取自日本網站 http://agora.ex. nii.ac.jp/digital-typhoon)。

校正紅外線降雨閾值,估算 GPI\_Adjust 與 GPI\_235總和隨著時間的變化,由圖 8a 中似乎兩 者有很大的差別,尤其在 2005/08/02 0332~0932 UTC,GPI\_Adjust總和一直隨時間減弱,而此時 颱風中心最低氣壓卻是處在 950 hPa 低點(圖 8b),這現象似乎有很大的不一致。由此可見,利 用GPI\_Adjust總和可以當作觀測颱風強度變化的 一種指標,但是少部分的結果因冷雲結構不完 整,故產生估算上的錯誤。







圖 8 同圖 4,(a) 為 2005 年 8 月 2 日至 2005 年 8 月 4 日 瑪 莎 颱 風 (MATSA) 在 海 上 期 間 GPI\_Adjust 與 GPI\_235 總和與 (b) 2005 年 7 月 31 日至 2005 年 8 月 9 日颱風中心氣壓隨時 間變化的情形,2005 年 8 月 4 日為颱風強度 最強的時段(取自日本網站 http://agora.ex.nii. ac.jp/digital-typhoon)。

圖9顯示瑪莎颱風在海上 1°×1°網格點, 其紅外線亮度溫度 (MTSAT-1R) 隨時間變化分 佈的情形。雲系中黑色實線所包含的面積為微波 校正紅外線降雨闌値 (211 K) 所代表之降雨範 圍,也就是要估算 GPI\_Adjust 降雨率的範圍。圖 10 顯示瑪莎颱風在 1°×1°網格點中,以微波資 料校正紅外線降雨闌値,應用在地球同步衛星 上,估算海上 GPI\_Adjust 總和隨時間變化的情 形,其 GPI\_Adjust 的強度均大於 0.5 mm/hr。





圖 9 瑪莎颱風在海上 1°×1°網格點其紅外線亮度溫度 (MTSAT-1R 11 μm) 隨時 間變化(0333 ~ 0900 UTC)分佈的情形。雲系中黑色實線所包含的面積為微 波校正紅外線降雨閾値 (211 K) 所代表之降雨範圍。

在定量驗證方面,我們以日本宮古島附近11 個降雨測站觀測値對 GPI\_Adjust 和 3B42RT 產品 進行相互比較。由於空間解析度的因素,島嶼測 站僅代表一個點的降雨資料,若將其與25 km × 25 km 或 100 km × 100 km 解析度的範圍進行驗 證,除非整個範圍內降雨是均匀的,否則會出現 降雨分佈不均匀的誤差,因此我們引用陳等人 (2006)驗證的方法,應用於 MTSAT 的紅外線 (11 $\mu$ m)資料的亮溫,分別計算25 km × 25 km 與 100 km × 100 km 解析度中符合均勻降雨的條 件,我們取符合亮溫標準差≤ 8 K 的資料進行驗 證。圖 11a 為 GPI Adjust 及 3B42RT 分別與島嶼 降雨測站在 100 km × 100 km 驗證的結果,符合 條件的資料數共有 29 筆。GPI\_adjust 與島嶼測站 相關係數為 0.81,均方根誤差 1.81 mm/hr; 3B42RT 與島嶼測站相關係數為 0.77,均方根誤 差 2.43 mm/hr。另圖 11b 顯示兩者在 25 km × 25 km 驗證的結果,符合條件的資料數共有 104 筆。 GPI\_adjust 與島嶼測站相關係數為 0.42,均方根 誤差 4.12 mm/hr; 3B42RT 與島嶼測站相關係數 為 0.64,均方根誤差 2.92 mm/hr。由圖 11b 的結 果,我們發現 GPI\_Adjust 表現較 3B42RT 不理 想,其可能原因有二,分述如下:



圖 10 同圖 9,瑪莎颱風 1°×1°網格點以微波資料定出紅外線降雨闌值,應用在地球 同步衛星上,估算海上 GPI 降雨分佈隨時間變化的情形 (GPI>0.5 mm/hr)。

第一、3B42RT 是利用多顆衛星的微波資料 校正紅外線的降雨闌値,其校正的次數明顯較本 研究僅使用 TMI 資料要多,也就是說,經由微波 多次較正後的定量降水,可隨時改變紅外線的降 雨闌値。第二、3B42RT 的產品其微波資料估算 地面降雨強度是利用 GPROF 的方法,該方法屬 物理法,而本研究利用 TMI 資料反演地表的降雨 強度則是統計法。目前,我們曾於2008年利用 TMI資料經由物理法反演的結果與統計法相互比較,發現物理法反演的結果較統計法要好,因此 3B42RT具有較優於統計法的結果。

由於現階段我們利用統計法分析三種不同尺 度下,建立 TMI\_RR 與 FC 之間的關係,以 100 km × 100 km 是最好,經由島嶼測站資料驗證的結果



圖 11 (a)顯示在 100 km × 100 km 解析度 GPI\_Adjust 與 3B42RT 經由島嶼測站降雨資料驗 證的結果,其相關係數分別為 0.81 與 0.77; (b)為 25 km × 25 km 解析度 GPI\_Adjust 與 3B42RT 經由島嶼測站降雨資料驗證的結果,其相關係數分別為 0.42 與 0.64。

也顯示在此解析度下,我們的表現較 3B42RT 要 好,同時當 TMI 資料獲得後,即可快速修正 MTSAT 紅外線降雨閾値,進而反演每隔 30 分鐘 一筆降雨分佈。如今 3B42RT 卻無法快速獲得, 並且每 3 小時才一筆資料,在資料時間解析度而 言並不理想。雖然如此,但畢竟本研究在 100 km × 100 km 的尺度稍嫌不夠,未來計劃將採用物理 法反演地表降雨的成果,修正 MTSAT 紅外線降 雨閾値,同時增加 AMSR-E 微波資料進行 GPI\_Adjust 的估算,期望提昇在 25 km × 25 km 解析度的驗證結果。

# 五、結論

利用 TMI\_RR 調整紅外線降雨閾值並建立 GPI\_Adjust 方程式的方法,其主要的目的是結合 微波資料可穿透雲的特性以及紅外線資料高時間 解析度的優點,建立準即時估算颱風降雨的技 術。結果顯示,結合微波及紅外線資料所發展的 GPI\_Adjust 技術在 1°×1°解析度下表現最好, 並對判斷颱風降雨強弱持續性變化的趨勢有良好 的成果。同時,相對於全球紅外線固定之降雨闌 値 235 K,本研究之動態降雨闌値較能掌握住颱 風降雨強度之變化。此外,利用 GPI\_Adjust 總 和持續對颱風強度變化作分析,經由颱風中心最 低氣壓隨時間變化的情形,間接驗證颱風強度會 隨著 GPI\_Adjust 總和持續的增加而增加。因 此,應用這種技術可以在缺乏微波資料時,提供 一個較實用估算颱風強度的方法。同時,在颱風 侵襲陸地前,防災單位可以藉此預先做好防颱準 備工作,防止颱風造成重大的災害。

目前中央氣象局有即時接收 Advanced Microwave Scanning Radiometer - EOS (AMSR-E) 微波資料,所以結合 AMSR-E 與 MTSAT-1R 紅 外線資料可即時獲得海上颱風即時降水反演值, 對防災、救災有相當大的助益。現今我們的團隊 已經發展出一套利用AMSR-E微波資料估算海上 颱風降雨率的線性迴歸反演方程式(吳,2008), 希望未來與中央氣象局合作,將此颱風反演降雨 率技術轉移至中央氣象局作為防颱作業之一環, 雖然目前中央氣象局即時接收 AMSR-E 資料在 幾何定位上有些許誤差(約10~15 公里),但是 經修正後將增加即時微波觀測資料,可獲得較準 確的颱風反演降雨率,進而提供高時間解析度之 GPI\_Adjust 降雨總和。

## 致 謝

本研究感謝美國航空暨太空總署 NASA GSFC DAAC 資料庫免費提供 TMI 微波資料及 VIRS 紅外線資料。同時,感謝中央氣象局提供 MTSAT-1R 地球同步衛星紅外線資料。另外,本 研究是在國科會編號 NSC 95-2625-Z-014-002-計畫經費補助下完成,在此一倂感謝。

# 參考文獻

- 李慶忠、鳳錦暉、劉崇治、石大明,2005:TRMM 衛星 PR 資料於海上颱風降雨特徵之研究, 大氣科學,第33期,第2號,161-188頁。
- 吳東洲,2008:利用 AMSR-E 衛星微波頻道進行 海上颱風定量降雨之研究,國防大學中正理 工學院碩士論文。
- 陳萬金、胡仁基、劉振榮、張茂興,2006:利用 TMI 微波頻道反演海上颱風定量降水之研 究,大氣科學,第34期,第1號,67-88頁。
- 曾忠一,1988,<u>大氣衛星遙測學</u>,渤海堂文化事 業公司,630頁。
- Adler, R. F., G. J. Huffman, D. T. Bolvin, S. Curtis, and R. J. Nelkin, 2000: Tropical rainfall

distributions determined using TRMM combined with other satellite and rain gauge information, *J. Appl. Meteor.*, 39, 2007-2023.

- Arkin, P. A., 1979: The relationship between fractional coverage of high cloud and rainfall accumulations during GATE over the B-scale array, *Mon. Wea. Rev.*, 107, 1382-1387.
- Arkin, P. A., and B., Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982 – 1984, *Mon. Wea. Rev.*, 115, 51-74.
- Ba, M. B. and Arnold Gruber, 2001: GOES Multispectral Rainfall Algorithm (GMSRA), J. Appl. Meteor., 40, 1500-1514.
- Bowman, K. P., 2005: Comparison of TRMM precipitation retrievals with rain gauge data from ocean buoys, J. Climate, 18, 178-190.
- Chen, W. J. and C. C. Li, 2002: Rain retrievals using Tropical Rainfall Measuring Mission and Geostationary Meteorological Satellite 5 data obtained during the SCSMEX, *Int. J. Remote Sens.*, 23, 2425-2448.
- Feidas, H., G. Kokolatos, A. Negri, M. Manyin, and N. Chrysoulakis, 2006: A TRMM-Calibrated infrared techinique for rainfall estimation: application on rain events over eastern Mediterranean, Adv. Geosciences, 7, 181-188.
- Ferraro, R. R., N., Grody, and G. F., Marks, 1994: Effects of surface conditions on rain identification using the DMSP-SSM/I, *Remote Sens. Rev.*, 11, 195-209.
- Huffman, G. J., R. F. Adler, M. M. Morrisey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001: Global precipitation at

one-degree daily resolution from mutlisatellite observations. *J. Hydrometeor*, 2, 36-50.

- Inoue, T., 1987: A cloud type classification with NOAA-7 split-window measurements, *J. Geophys. Res.*, 92, 3991-4000.
- Joyce, R. J., Janowiak, J. E., Arkin, P. A., and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution, *J. Hydrometeor*, 5, 487-503.
- Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003: Satellite rainfall estimation using combined passive microwave and infrared algorithms, *J. Hydrometeor*, 4, 1088-1104.
- Kuligowski, R. J., 2002: A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates, *J. Hydrometeor*, 3, 112-130.
- Kummerow, C., and Giglio, L., 1995: A method for combining passive microwave and infrared rainfall observations, J. Atmos. Oceanic Technol., 12, 33-45.
- Kummerow C., 1998: Beamfilling errors in passive microwave rainfall retrievals, J. Appl. Meteor., 37, 356-370.

- Kurino, T., 1997: A satellite infrared technique for estimating "deep / shallow" precipitation, Adv. Space Res., 19, 511-514.
- Liu, G. R., C. C., Liu, and T. H., Kuo, 2001: Rainfall intensity estimation by ground-based dualfrequency microwave radiometers, *J. Appl. Meteor.*, 40, 1035-1041.
- Rajendran, K. and T. Nakazawa, 2005: Systematic differences between TRMM 3G68 PR and TMI rainfall estimates and the possible association with life cycle of convection, *Scientific Online Letters on the Atmosphere* (SOLA), 1, 165-168, doi:10.2151/sola.2005-043.
- Todd, M. C., C. Kidd, D. Kniveton, and T. J. Bellerby, 2001: A combined satellite infrared and passive microwave technique for estimation of small-scale rainfall, *J. Atmos. Oceanic Technol.*, 18, 742-755.
- Wilheit, T. T., A. T. C. Chang, and L. S. Chiu, 1991: Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions, *J. Atmos. Oceanic Technol.*, 8, 118-136.
- Xu, L., X. Gao, S. Sorooshian, P. A. Arkin, and B. Imam, 1999: A microwave infrared threshold technique to improve the GOES precipitation index. J. Appl. Meteor., 38, 569-579.

# Rainfall Estimation over Ocean by Combining TMI Microwave and MTSAT Infrared Observations

Jen-Chi Hu<sup>1</sup> Wann-Jin Chen<sup>2</sup> Jiang-Liang Wang<sup>2</sup> Gin-Rong Liu<sup>3</sup>

<sup>1</sup> School of Defense Science, Institute of Technology, National Defense University
<sup>2</sup> Dept. of Environmental Information and Engineering, Institute of Technology, National Defense University
<sup>3</sup> Center for Space and Remote Sensing Research, National Central University

(Manuscript received 30 March 2008; in final form 7 December 2008)

### ABSTRACT

This study is to develop a new method for estimating near real-time rain rate of typhoon by combining the advantages of microwave data which can penetrate through clouds and interact with the underlying rain particles and the high temporal resolutions from infrared observations. The TMI (Tropical Rainfall Measuring Mission Microwave Imager) microwave data on board TRMM satellite and a total of 11 rain gauges on small islands spreading in the south of Japan from 1998 to 2004 are used to establish a multi-channel linear regression equation by statistical method for retrieving the rain rate of typhoon. There are three major procedures in this study. Firstly the high resolution Visible and Infrared Scanner (VIRS) data of 11 µm on board TRMM is employed to calculate the fractional coverage (FC) of cold cloud. The GPI (GOES Precipitation Index) technique is then utilized to set up the best relationship among the FCs and rain rates, which are retrieved from TMI data. Finally, the satellite Typhoon rain rate over ocean is estimated by the MTSAT-1R geostationary satellite. The investigations of variations of infrared rainfall threshold are carried out by using a total of five cases (MATSA, KHANUN, 2005; KROSA, SEPAT, 2007; JANGMI, 2008) under three domains of different resolutions ( $1^{\circ} \times 1^{\circ}$ ,  $0.5^{\circ} \times$  $0.5^{\circ}, 0.25^{\circ} \times 0.25^{\circ}$ ). Results show that for this algorithm, combining microwave and infrared data, the correlation between rain rate and FC for the  $10 \times 10$  domain is the best than those for the other domains. From the regularly continuous rain rate products, it is capable of catching the tendency of rainfall intensity. In addition, the flexible infrared threshold calibrated by microwave data is more practically useful than the fixed global threshold of 235 K. Overall, this algorithm not only successfully utilizes the advantage of combining microwave and infrared data, but also has the ability of monitoring the changes of typhoon rainfall intensity.

Key words: Microwave data, Rain rate, Typhoon, TMI, GPI, MTSAT-1R